内存的使用
指针
指针是 C 语言非常重要的特征,指针也是一种变量,只不过它所表示的不是数据的值,而是内存的地址。通过使用指针,可以对任意内存地址的数据进行读写。
在了解指针读写的过程前,我们先需要了解如何定义一个指针,和普通的变量不同,在定义指针时,我们通常会在变量名前加一个 *
号。例如我们可以用指针定义如下的变量
char *d; // char类型的指针 d 定义 short *e; // short类型的指针 e 定义 long *f; // long类型的指针 f 定义
我们以32
位计算机为例,32位计算机的内存地址是 4 字节,在这种情况下,指针的长度也是 32 位。然而,变量 d e f 却代表了不同的字节长度,这是为什么呢?
实际上,这些数据表示的是从内存中一次读取的字节数,比如 d e f 的值都为 100,那么使用 char 类型时就能够从内存中读写 1 byte 的数据,使用 short 类型就能够从内存读写 2 字节的数据, 使用 long 就能够读写 4 字节的数据,下面是一个完整的类型字节表
类型 | 32位 | 64位 |
char | 1 | 1 |
short int | 2 | 2 |
int | 4 | 4 |
unsigned int | 4 | 4 |
float | 4 | 4 |
double | 8 | 8 |
long | 4 | 8 |
long long | 8 | 8 |
unsigned long | 4 | 8 |
我们可以用图来描述一下这个读写过程
数组是内存的实现
数组是指多个相同
的数据类型在内存中连续排列的一种形式。作为数组元素的各个数据会通过下标编号
来区分,这个编号也叫做索引
,如此一来,就可以对指定索引的元素进行读写操作。
首先先来认识一下数组,我们还是用 char、short、long 三种元素来定义数组,数组的元素用[value]
扩起来,里面的值代表的是数组的长度,就像下面的定义
char g[100]; short h[100]; long i[100];
数组定义的数据类型,也表示一次能够读写的内存大小,char 、short 、long 分别以 1 、2 、4 个字节为例进行内存的读写。
数组是内存的实现,数组和内存的物理结构完全一致,尤其是在读写1个字节的时候,当字节数超过 1 时,只能通过逐个字节来读取,下面是内存的读写过程
数组是我们学习的第一个数据结构,我们都知道数组的检索效率是比较快的,至于数组的检索效率为什么这么快并不是我们这篇文章讨论的重点。
栈和队列
我们上面提到数组是内存的一种实现,使用数组能够使编程更加高效,下面我们就来认识一下其他数据结构,通过这些数据结构也可以操作内存的读写。
栈
栈(stack)是一种很重要的数据结构,栈采用 LIFO(Last In First Out)即后入先出
的方式对内存进行操作。它就像一个大的收纳箱,你可以往里面放相同类型的东西,比如书,最先放进收纳箱的书在最下面,最后放进收纳箱的书在最上面,如果你想拿书的话, 必须从最上面开始取,否则是无法取出最下面的书籍的。
栈的数据结构就是这样,你把书籍压入收纳箱的操作叫做压入(push)
,你把书籍从收纳箱取出的操作叫做弹出(pop)
,它的模型图大概是这样
入栈相当于是增加操作,出栈相当于是删除操作,只不过叫法不一样。栈和内存不同,它不需要指定元素的地址。它的大概使用如下
// 压入数据 Push(123); Push(456); Push(789); // 弹出数据 j = Pop(); k = Pop(); l = Pop();
在栈中,LIFO 方式表示栈的数组中所保存的最后面的数据(Last In)会被最先读取出来(First On)。
队列
队列
和栈很相似但又不同,相同之处在于队列也不需要指定元素的地址,不同之处在于队列是一种 先入先出(First In First Out)
的数据结构。队列在我们生活中的使用很像是我们去景区排队买票一样,第一个排队的人最先买到票,以此类推,俗话说: 先到先得。它的使用如下
// 往队列中写入数据 EnQueue(123); EnQueue(456); EnQueue(789); // 从队列中读出数据 m = DeQueue(); n = DeQueue(); o = DeQueue();
向队列中写入数据称为 EnQueue()
入列,从队列中读出数据称为DeQueue()
。
与栈相对,FIFO 的方式表示队列中最先所保存的数据会优先被读取出来。
队列的实现一般有两种:顺序队列
和 循环队列
,我们上面的事例使用的是顺序队列,那么下面我们看一下循环队列的实现方式