大型网站图片服务器架构的演进

本文涉及的产品
.cn 域名,1个 12个月
简介:

在主流的Web站点中,图片往往是不可或缺的页面元素,尤其在大型网站中,几乎都将面临“海量图片资源”的存储、访问等相关技术问题。在针对图片服务器的架构扩展中,也会历经很多曲折甚至是血泪教训(尤其是早期规划不足,造成后期架构上很难兼容和扩展)。

本文将以一个真实垂直门户网站的发展历程,向大家娓娓道来。

构建在Windows平台之上的网站,往往会被业内众多技术认为很“保守”,甚至会有点。很大部分原因,是由于微软技术体系的封闭和部分技术人员的短视造成的(当然,主要还是人的问题)。由于长期缺乏开源支持,所以很多人只能“闭门造车”,这样很容易形成思维局限性和短板。以图片服务器为例子,如果前期没有容量规划和可扩展的设计,那么随着图片文件的不断增多和访问量的上升,由于在性能、容错/容灾、扩展性等方面的设计不足,后续将会给开发、运维工作带来很多问题,严重时甚至会影响到网站业务正常运作和互联网公司的发展(这绝不是在危言耸听)。

很多公司之所以选择Windows(.NET)平台来构建网站和图片服务器,很大部分由创始团队的技术背景决定的,早期的技术人员可能更熟悉.NET,或者团队的负责人认为Windows/.NET的易用性、“短平快”的开发模式、人才成本等方面都比较符合创业初期的团队,自然就选择了Windows。后期业务发展到一定规模,也很难轻易将整体架构迁移到其它开源平台上了。当然,对于构建大规模互联网,更建议首选开源架构,因为有很多成熟的案例和开源生态的支持(也会有很多坑,就看是你自己最先去踩坑,还是在别人踩了修复之后你再用),避免重复造轮子和支出高额授权费用。对于迁移难度较大的应用,个人比较推荐Linux、Mono、Jexus、Mysql、Memcahed、Redis……混搭的架构,同样能支撑具有高并发访问和大数据量等特点的互联网应用。

单机时代的图片服务器架构(集中式)

初创时期由于时间紧迫,开发人员水平也很有限等原因。所以通常就直接在website文件所在的目录下,建立1个upload子目录,用于保存用户上传的图片文件。如果按业务再细分,可以在upload目录下再建立不同的子目录来区分。例如:upload\QA,upload\Face 等。

在数据库表中保存的也是”upload/qa/test.jpg”这类相对路径。

用户的访问方式如下:http://www.yourdomain.com/upload/qa/test.jpg

程序上传和写入方式:

  • 程序员A通过在web.config中配置物理目录D:\Web\yourdomain\upload 然后通过stream的方式写入文件;
  • 程序员B通过Server.MapPath等方式,根据相对路径获取物理目录 然后也通过stream的方式写入文件。

优点:实现起来最简单,无需任何复杂技术,就能成功将用户上传的文件写入指定目录。保存数据库记录和访问起来倒是也很方便。

缺点:上传方式混乱,严重不利于网站的扩展。

针对上述最原始的架构,主要面临着如下问题:

  1. 随着upload目录中文件越来越多,所在分区(例如D盘)如果出现容量不足,则很难扩容。只能停机后更换更大容量的存储设备,再将旧数据导入。
  2. 在部署新版本(部署新版本前通过需要备份)和日常备份website文件的时候,需要同时操作upload目录中的文件,如果考虑到访问量上升,后边部署由多台Web服务器组成的负载均衡集群,集群节点之间如果做好文件实时同步将是个难题。

集群时代的图片服务器架构(实时同步)

在website站点下面,新建一个名为upload的虚拟目录,由于虚拟目录的灵活性,能在一定程度上取代物理目录,并兼容原有的图片上传和访问方式。用户的访问方式依然是:http://www.yourdomain.com/upload/qa/test.jpg

优点:配置更加灵活,也能兼容老版本的上传和访问方式。

因为虚拟目录,可以指向本地任意盘符下的任意目录。这样一来,还可以通过接入外置存储,来进行单机的容量扩展。

缺点:部署成由多台Web服务器组成的集群,各个Web服务器(集群节点)之间(虚拟目录下的)需要实时的去同步文件,由于同步效率和实时性的限制,很难保证某一时刻各节点上文件是完全一致的。

基本架构如下图所示:

从上图可看出,整个Web服务器架构已经具备“可扩展、高可用”了,主要问题和瓶颈都集中在多台服务器之间的文件同步上。

上述架构中只能在这几台Web服务器上互相“增量同步”,这样一来,就不支持文件的“删除、更新”操作的同步了。

早期的想法是,在应用程序层面做控制,当用户请求在web1服务器进行上传写入的同时,也同步去调用其它web服务器上的上传接口,这显然是得不偿失的。所以我们选择使用Rsync类的软件来做定时文件同步的,从而省去了“重复造轮子”的成本,也降低了风险性。

同步操作里面,一般有比较经典的两种模型,即推拉模型:所谓“拉”,就是指轮询地去获取更新,所谓推,就是发生更改后主动的“推”给其它机器。当然,也可以采用加高级的事件通知机制来完成此类动作。

在高并发写入的场景中,同步都会出现效率和实时性问题,而且大量文件同步也是很消耗系统和带宽资源的(跨网段则更明显)。

集群时代的图片服务器架构改进(共享存储)

沿用虚拟目录的方式,通过UNC(网络路径)的方式实现共享存储(将upload虚拟目录指向UNC)

用户的访问方式1:http://www.yourdomain.com/upload/qa/test.jpg

用户的访问方式2(可以配置独立域名):http://img.yourdomain.com/upload/qa/test.jpg

支持UNC所在server上配置独立域名指向,并配置轻量级的web服务器,来实现独立图片服务器。

优点: 通过UNC(网络路径)的方式来进行读写操作,可以避免多服务器之间同步相关的问题。相对来讲很灵活,也支持扩容/扩展。支持配置成独立图片服务器和域名访问,也完整兼容旧版本的访问规则。

缺点 :但是UNC配置有些繁琐,而且会造成一定的(读写和安全)性能损失。可能会出现“单点故障”。如果存储级别没有raid或者更高级的灾备措施,还会造成数据丢失。

基本架构如下图所示:

在早期的很多基于Linux开源架构的网站中,如果不想同步图片,可能会利用NFS来实现。事实证明,NFS在高并发读写和海量存储方面,效率上存在一定问题,并非最佳的选择,所以大部分互联网公司都不会使用NFS来实现此类应用。当然,也可以通过Windows自带的DFS来实现,缺点是“配置复杂,效率未知,而且缺乏资料大量的实际案例”。另外,也有一些公司采用FTP或Samba来实现。

上面提到的几种架构,在上传/下载操作时,都经过了Web服务器(虽然共享存储的这种架构,也可以配置独立域名和站点来提供图片访问,但上传写入仍然得经过Web服务器上的应用程序来处理),这对Web服务器来讲无疑是造成巨大的压力。所以,更建议使用独立的图片服务器和独立的域名,来提供用户图片的上传和访问。

独立图片服务器/独立域名的好处

  1. 图片访问是很消耗服务器资源的(因为会涉及到操作系统的上下文切换和磁盘I/O操作)。分离出来后,Web/App服务器可以更专注发挥动态处理的能力。
  2. 独立存储,更方便做扩容、容灾和数据迁移。
  3. 浏览器(相同域名下的)并发策略限制,性能损失。
  4. 访问图片时,请求信息中总带cookie信息,也会造成性能损失。
  5. 方便做图片访问请求的负载均衡,方便应用各种缓存策略(HTTP Header、Proxy Cache等),也更加方便迁移到CDN。
  6. ......

我们可以使用Lighttpd或者Nginx等轻量级的web服务器来架构独立图片服务器。

当前的图片服务器架构(分布式文件系统+CDN)

在构建当前的图片服务器架构之前,可以先彻底撇开web服务器,直接配置单独的图片服务器/域名。但面临如下的问题:

  1. 旧图片数据怎么办?能否继续兼容旧图片路径访问规则?
  2. 独立的图片服务器上需要提供单独的上传写入的接口(服务API对外发布),安全问题如何保证?
  3. 同理,假如有多台独立图片服务器,是使用可扩展的共享存储方案,还是采用实时同步机制?

直到应用级别的(非系统级) DFS(例如FastDFS HDFS MogileFs MooseFS、TFS)的流行,简化了这个问题:执行冗余备份、支持自动同步、支持线性扩展、支持主流语言的客户端api上传/下载/删除等操作,部分支持文件索引,部分支持提供Web的方式来访问。

考虑到各DFS的特点,客户端API语言支持情况(需要支持C#),文档和案例,以及社区的支持度,我们最终选择了FastDFS来部署。

唯一的问题是:可能会不兼容旧版本的访问规则。如果将旧图片一次性导入FastDFS,但由于旧图片访问路径分布存储在不同业务数据库的各个表中,整体更新起来也十分困难,所以必须得兼容旧版本的访问规则。架构升级往往比做全新架构更有难度,就是因为还要兼容之前版本的问题。(给飞机在空中换引擎可比造架飞机难得多)

解决方案如下:

首先,关闭旧版本上传入口(避免继续使用导致数据不一致)。将旧图片数据通过rsync工具一次性迁移到独立的图片服务器上(即下图中描述的Old Image Server)。在最前端(七层代理,如Haproxy、Nginx)用ACL(访问规则控制),将旧图片对应URL规则的请求(正则)匹配到,然后将请求直接转发指定的web 服务器列表,在该列表中的服务器上配置好提供图片(以Web方式)访问的站点,并加入缓存策略。这样实现旧图片服务器的分离和缓存,兼容了旧图片的访问规则并提升旧图片访问效率,也避免了实时同步所带来的问题。

整体架构如图:

基于FastDFS的独立图片服务器集群架构,虽然已经非常的成熟,但是由于国内“南北互联”和IDC带宽成本等问题(图片是非常消耗流量的),我们最终还是选择了商用的CDN技术,实现起来也非常容易,原理其实也很简单,我这里只做个简单的介绍:

将img域名cname到CDN厂商指定的域名上,用户请求访问图片时,则由CDN厂商提供智能DNS解析,将最近的(当然也可能有其它更复杂的策略,例如负载情况、健康状态等)服务节点地址返回给用户,用户请求到达指定的服务器节点上,该节点上提供了类似Squid/Vanish的代理缓存服务,如果是第一次请求该路径,则会从源站获取图片资源返回客户端浏览器,如果缓存中存在,则直接从缓存中获取并返回给客户端浏览器,完成请求/响应过程。

由于采用了商用CDN服务,所以我们并没有考虑用Squid/Vanish来自行构建前置代理缓存。

上面的整个集群架构,可以很方便的做横向扩展,能满足一般垂直领域中大型网站的图片服务需求(当然,像taobao这样超大规模的可能另当别论)。经测试,提供图片访问的单台Nginx服务器(至强E5四核CPU、16G内存、SSD),对小静态页面(压缩后大概只有10kb左右的)可以扛住几千个并发且毫无压力。当然,由于图片本身体积比纯文本的静态页面大很多,提供图片访问的服务器的抗并发能力,往往会受限于磁盘的I/O处理能力和IDC提供的带宽。Nginx的抗并发能力还是非常强的,而且对资源占用很低,尤其是处理静态资源,似乎都不需要有过多担心了。可以根据实际访问量的需求,通过调整Nginx的参数,对Linux内核做调优,加入分级缓存策略等手段能够做更大程度的优化,也可以通过增加服务器或者升级服务器配置来做扩展,最直接的是通过购买更高级的存储设备和更大的带宽,以满足更大访问量的需求。

值得一提的是,在“云计算”流行的当下,也推荐高速发展期间的网站,使用“云存储”这样的方案,既能帮你解决各类存储、扩展、备灾的问题,又能做好CDN加速。最重要的是,价格也不贵。

总结,有关图片服务器架构扩展,大致围绕这些问题展开:

  1. 容量规划和扩展问题。
  2. 数据的同步、冗余和容灾。
  3. 硬件设备的成本和可靠性(是普通机械硬盘,还是SSD,或者更高端的存储设备和方案)。
  4. 文件系统的选择。根据文件特性(例如文件大小、读写比例等)选择是用ext3/4或者NFS/GFS/TFS这些开源的(分布式)文件系统。
  5. 图片的加速访问。采用商用CDN或者自建的代理缓存、web静态缓存架构。
  6. 旧图片路径和访问规则的兼容性,应用程序层面的可扩展,上传和访问的性能和安全性等。 .

  7. 原文发布时间为:2015-07-01

  8. 本文来自云栖社区合作伙伴“Linux中国”
目录
相关文章
|
13天前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器ECS架构区别及选择参考:X86计算、ARM计算等架构介绍
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别,本文主要简单介绍下这些架构各自的主要性能及适用场景,以便大家了解不同类型的架构有何不同,主要特点及适用场景有哪些。
|
18天前
|
存储 人工智能 运维
面向AI的服务器计算软硬件架构实践和创新
阿里云在新一代通用计算服务器设计中,针对处理器核心数迅速增长(2024年超100核)、超多核心带来的业务和硬件挑战、网络IO与CPU性能增速不匹配、服务器物理机型复杂等问题,推出了磐久F系列通用计算服务器。该系列服务器采用单路设计减少爆炸半径,优化散热支持600瓦TDP,并实现CIPU节点比例灵活配比及部件模块化可插拔设计,提升运维效率和客户响应速度。此外,还介绍了面向AI的服务器架构挑战与软硬件结合创新,包括内存墙问题、板级工程能力挑战以及AI Infra 2.0服务器的开放架构特点。最后,探讨了大模型高效推理中的显存优化和量化压缩技术,旨在降低部署成本并提高系统效率。
|
17天前
|
弹性计算 运维 Ubuntu
使用阿里云服务器自动搭建WordPress网站流程,超简单by系统运维管理OOS
本教程介绍如何使用阿里云服务器(ECS)和系统运维管理OOS自动搭建WordPress网站,支持Ubuntu、CentOS及Alibaba Cloud Linux等操作系统。前提条件包括ECS实例处于运行中、有公网IP且安全组已开启80端口。安装步骤简单:进入ECS快速购买控制台选择预装WordPress,确认下单后通过管理控制台查看实例详情并开放安全组端口。最后,通过实例公网IP访问,出现WordPress登录页即表示安装成功。
|
2月前
|
安全 Linux 应用服务中间件
从零开始启动、配置、保护你的云服务器并搭建一个简单的网站
本文详细介绍了如何准备原料、搭建基础环境、进行安全防护、建设网站、管理证书以及开启BBR优化网络性能。主要内容包括获取健康云服务器、配置SSH登录、创建非root用户、启用密钥认证、安装Nginx、申请TLS证书、配置HTTPS自动跳转及优化网络性能等步骤。通过本文,读者可以掌握从零开始搭建个人网站的全过程。
59 2
从零开始启动、配置、保护你的云服务器并搭建一个简单的网站
|
1月前
|
开发框架 .NET PHP
网站应用项目如何选择阿里云服务器实例规格+内存+CPU+带宽+操作系统等配置
对于使用阿里云服务器的搭建网站的用户来说,面对众多可选的实例规格和配置选项,我们应该如何做出最佳选择,以最大化业务效益并控制成本,成为大家比较关注的问题,如果实例、内存、CPU、带宽等配置选择不合适,可能会影响到自己业务在云服务器上的计算性能及后期运营状况,本文将详细解析企业在搭建网站应用项目时选购阿里云服务器应考虑的一些因素,以供参考。
|
2月前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器架构有啥区别?X86计算、Arm、GPU异构、裸金属和高性能计算对比
阿里云ECS涵盖x86、ARM、GPU/FPGA/ASIC、弹性裸金属及高性能计算等多种架构。x86架构采用Intel/AMD处理器,适用于广泛企业级应用;ARM架构低功耗,适合容器与微服务;GPU/FPGA/ASIC专为AI、图形处理设计;弹性裸金属提供物理机性能;高性能计算则针对大规模并行计算优化。
109 7
|
2月前
|
存储 缓存 弹性计算
Codota的服务器存储架构
Codota的服务器存储架构
37 5
|
3月前
|
监控 网络协议 安全
DNS服务器故障不容小觑,从应急视角谈DNS架构
DNS服务器故障不容小觑,从应急视角谈DNS架构
85 4
|
3月前
|
机器学习/深度学习 监控 Serverless
无服务器架构(Serverless)
无服务器架构(Serverless)
119 4
|
2月前
|
安全 数据挖掘 网络安全
网站建站如何选择合适的服务器配置
建站初期应进行长期数据分析与预测,合理选择服务器配置。主要依据同时在线人数、CPU性能、内存大小及带宽类型,同时考虑安全防护,如选择带防火墙的高防服务器,确保网站稳定运行与良好用户体验。
63 0

热门文章

最新文章