【手把手带你刷LeetCode】——04.2.3.4的幂

简介: 2.3.4的幂


【前言】:上面的博文中讲解的2的幂除了运用位运算和利用约数来解题,其实还可以利用递归的思想,这里就向大家详细介绍一下,利用递归求2.3.4的幂



原题1: 2的幂

题目描述:

给你一个整数 n,请你判断该整数是否是 2 的幂次方。如果是,返回 true ;否则,返回 false 。

如果存在一个整数 x 使得 n == 2^x ,则认为 n 是 2 的幂次方。

示例1:

输入:n = 1
输出:true
解释:2^0 = 1

示例2:

输入:n = 3
输出:false


在讲解递归解法之前,铁汁可以先把之前的方法再回顾一下,链接放在下面咯。

【手把手带你刷LeetCode】——01.2的幂_安然无虞的博客-CSDN博客

代码执行:


bool isPowerOfTwo(int n){
    if(n == 1){
        return true;
    }
    return (n > 0 && n % 2 == 0) ? isPowerOfTwo(n / 2) : false;
}


看起来是不是很简单,下面来分析一下复杂度。


时间复杂度:O(N)

空间复杂度:O(N)


为啥呢?因为递归调用了n / 2次,每次调用递归都需要建立一个栈帧,而每个栈帧又都使用了常数个空间,递归函数的空间复杂度取决于递归调用栈的深度,所以很明显,本题时间复杂度和空间复杂度都是O(N)。



原题2: 3的幂


题目描述:

给定一个整数,写一个函数来判断它是否是 3 的幂次方。如果是,返回 true ;否则,返回 false 。

整数 n 是 3 的幂次方需满足:存在整数 x 使得 n == 3^x

示例1:

输入:n = 27
输出:true

示例2:

输入:n = 0
输出:false

代码执行:

bool isPowerOfThree(int n){
    if(n == 1){
        return true;
    }
    return (n > 0 && n % 3 == 0) ? isPowerOfThree(n / 3) : false;
}

复杂度分析:

时间复杂度:O(N)

空间复杂度:O(N)

哈哈,除了变了数字,其他都一样,所以4的幂留给铁汁咯,自己尝试一下哈。

力扣

总结

今天是力扣打卡第四天!!

每天都进步一点点是多么幸福的一件事,和铁汁们共勉哦,咱们明天再见!!!


相关文章
|
8月前
|
算法
刷题专栏(二十二):3 的幂
刷题专栏(二十二):3 的幂
130 0
|
8月前
|
算法 Java
刷题专栏(二十三):4的幂
刷题专栏(二十三):4的幂
107 0
|
8月前
|
算法
六六力扣刷题数组之再刷二分法
六六力扣刷题数组之再刷二分法
49 0
刷 leetcode三个数的最大乘积 | 刷题打卡
刷 leetcode三个数的最大乘积 | 刷题打卡
94 0
|
算法
LeetCode每日一题——面试题 17.09. 第 k 个数
有些数的素因子只有 3,5,7,请设计一个算法找出第 k 个数。注意,不是必须有这些素因子,而是必须不包含其他的素因子。例如,前几个数按顺序应该是 1,3,5,7,9,15,21。
94 0
|
机器学习/深度学习 存储
|
存储 算法
【刷算法】LeetCode- 两数之和
【刷算法】LeetCode- 两数之和