Linux系统编程-(pthread)线程通信(自旋锁)

简介: 自旋锁不管是内核编程,还是应用层编程都会用到;自旋锁和互斥量类似,它不是通过休眠使进程阻塞,而是在获取锁之前一直处于忙等(也就叫自旋)状态。

1. 自旋锁介绍

自旋锁不管是内核编程,还是应用层编程都会用到;自旋锁和互斥量类似,它不是通过休眠使进程阻塞,而是在获取锁之前一直处于忙等(也就叫自旋)状态。

自旋锁可用于下面的情况:锁被持有的时间短,并且线程不希望再重新调度上花费太多的成本。自旋锁通常作为底层原语用于实现其他类型的锁。根据他们所基于的系统架构,可以通过使用测试并设置指令有效地实现。当然这里说的有效也还是会导致CPU资源的浪费:当线程自旋锁变为可用时,CPU不能做其他任何事情,这也是自旋锁只能够被只有一小段时间的原因。

自旋锁总结:

  1. 自旋锁和互斥锁的使用框架、场景相似的。
  2. 互斥锁在得不到锁的时候会休眠。
  3. 自旋锁在得不到锁的时候不会休眠,会一直检测锁的状态。
  4. 自旋锁比较适合保护变量赋值、函数调用等场景。

2. 自旋锁相关接口函数

1. 销毁自旋锁
int   pthread_spin_destroy(pthread_spinlock_t *);
2. 初始化自旋锁
int   pthread_spin_init(pthread_spinlock_t *, int);
3. 自旋锁上锁(阻塞)
int   pthread_spin_lock(pthread_spinlock_t *);
4. 自旋锁上锁(非阻塞)
int   pthread_spin_trylock(pthread_spinlock_t *);
5. 自旋锁解锁
int   pthread_spin_unlock(pthread_spinlock_t *);
以上函数成功都返回0.

pthread_spin_init 函数的pshared参数表示进程共享属性,表明自旋锁是如何获取的,如果它设为PTHREAD_PROCESS_SHARED,则自旋锁能被,可以访问锁底层内存的线程所获取,即使那些线程属于不同的进程。否则pshared参数设为PTHREAD_PROCESS_PRIVATE,自旋锁就只能被初始化该锁的进程内部的线程访问到。

如果自旋锁当前在解锁状态,pthread_spin_lock函数不要自旋就可以对它加锁,试图对没有加锁的自旋锁进行解锁,结果是未定义的。需要注意,不要在持有自旋锁情况下可能会进入休眠状态的函数,如果调用了这些函数,会浪费CPU资源,其他线程需要获取自旋锁需要等待的时间更长了。

3. 自旋锁运用模板

下面代码创建了两个线程,分别访问一个全局变量,这里采用自旋锁进行保护。

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <dirent.h>
#include <stdlib.h>
#include <pthread.h>

pthread_spinlock_t spinlock;

int data;
/*
线程工作函数
*/
void *thread_work_func(void *dev)
{
    while(1)
    {
        pthread_spin_lock(&spinlock); //上锁
        printf("data=%d\n",data);
        pthread_spin_unlock(&spinlock); //解锁
        sleep(1);
    }
}

/*
线程工作函数
*/
void *thread_work_func2(void *dev)
{
    while(1)
    {
        pthread_spin_lock(&spinlock); //上锁
        data++;
        pthread_spin_unlock(&spinlock); //解锁
        sleep(1);
    }
}

int main(int argc,char **argv)
{   
    //初始化自旋锁
    pthread_spin_init(&spinlock,PTHREAD_PROCESS_PRIVATE);

    /*1. 创建子线程1*/
    pthread_t thread_id;
    if(pthread_create(&thread_id,NULL,thread_work_func,NULL)!=0)
    {
        printf("子线程1创建失败.\n");
        return -1;
    }
    /*2. 创建子线程2*/
    pthread_t thread_id2;
    if(pthread_create(&thread_id2,NULL,thread_work_func2,NULL)!=0)
    {
        printf("子线程2创建失败.\n");
        return -1;
    }

    /*3. 等待线程的介绍*/
    pthread_join(thread_id,NULL);
    pthread_join(thread_id2,NULL);

    //销毁自旋锁
    pthread_spin_destroy(&spinlock);
    return 0;
}
目录
相关文章
|
9月前
|
存储 Linux API
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
在计算机系统的底层架构中,操作系统肩负着资源管理与任务调度的重任。当我们启动各类应用程序时,其背后复杂的运作机制便悄然展开。程序,作为静态的指令集合,如何在系统中实现动态执行?本文带你一探究竟!
【Linux进程概念】—— 操作系统中的“生命体”,计算机里的“多线程”
|
7月前
|
并行计算 Linux
Linux内核中的线程和进程实现详解
了解进程和线程如何工作,可以帮助我们更好地编写程序,充分利用多核CPU,实现并行计算,提高系统的响应速度和计算效能。记住,适当平衡进程和线程的使用,既要拥有独立空间的'兄弟',也需要在'家庭'中分享和并行的成员。对于这个世界,现在,你应该有一个全新的认识。
285 67
|
6月前
|
安全 算法 Ubuntu
Linux(openssl)环境:编程控制让证书自签的技巧。
总结:在Linux环境中,OpenSSL是一个非常实用的工具,可以帮助我们轻松地生成自签名证书。通过上述三个简单步骤,即可为内部网络、测试环境或开发环境创建自签名证书。但在公共访问场景下,建议购买经过权威认证机构签发的证书,以避免安全警告。
307 13
|
8月前
|
JavaScript Ubuntu Linux
如何在阿里云的linux上搭建Node.js编程环境?
本指南介绍如何在阿里云Linux服务器(Ubuntu/CentOS)上搭建Node.js环境,包含两种安装方式:包管理器快速安装和NVM多版本管理。同时覆盖全局npm工具配置、应用部署示例(如Express服务)、PM2持久化运行、阿里云安全组设置及外部访问验证等步骤,助你完成开发与生产环境的搭建。
|
9月前
|
Linux
Linux编程: 在业务线程中注册和处理Linux信号
通过本文,您可以了解如何在业务线程中注册和处理Linux信号。正确处理信号可以提高程序的健壮性和稳定性。希望这些内容能帮助您更好地理解和应用Linux信号处理机制。
178 26
|
9月前
|
Linux
Linux编程: 在业务线程中注册和处理Linux信号
本文详细介绍了如何在Linux中通过在业务线程中注册和处理信号。我们讨论了信号的基本概念,并通过完整的代码示例展示了在业务线程中注册和处理信号的方法。通过正确地使用信号处理机制,可以提高程序的健壮性和响应能力。希望本文能帮助您更好地理解和应用Linux信号处理,提高开发效率和代码质量。
186 17
|
缓存 Linux 测试技术
安装【银河麒麟V10】linux系统--并挂载镜像
安装【银河麒麟V10】linux系统--并挂载镜像
5941 0
|
关系型数据库 MySQL Linux
卸载、下载、安装mysql(Linux系统centos7)
卸载、下载、安装mysql(Linux系统centos7)
449 0
|
Linux
手把手教会你安装Linux系统
手把手教会你安装Linux系统
237 0
|
Linux 虚拟化 数据安全/隐私保护
部署05-VMwareWorkstation中安装CentOS7 Linux操作系统, VMware部署CentOS系统第一步,下载Linux系统,/不要忘, CentOS -7-x86_64-DVD
部署05-VMwareWorkstation中安装CentOS7 Linux操作系统, VMware部署CentOS系统第一步,下载Linux系统,/不要忘, CentOS -7-x86_64-DVD