Linux系统编程-(pthread)线程通信(自旋锁)

简介: 自旋锁不管是内核编程,还是应用层编程都会用到;自旋锁和互斥量类似,它不是通过休眠使进程阻塞,而是在获取锁之前一直处于忙等(也就叫自旋)状态。

1. 自旋锁介绍

自旋锁不管是内核编程,还是应用层编程都会用到;自旋锁和互斥量类似,它不是通过休眠使进程阻塞,而是在获取锁之前一直处于忙等(也就叫自旋)状态。

自旋锁可用于下面的情况:锁被持有的时间短,并且线程不希望再重新调度上花费太多的成本。自旋锁通常作为底层原语用于实现其他类型的锁。根据他们所基于的系统架构,可以通过使用测试并设置指令有效地实现。当然这里说的有效也还是会导致CPU资源的浪费:当线程自旋锁变为可用时,CPU不能做其他任何事情,这也是自旋锁只能够被只有一小段时间的原因。

自旋锁总结:

  1. 自旋锁和互斥锁的使用框架、场景相似的。
  2. 互斥锁在得不到锁的时候会休眠。
  3. 自旋锁在得不到锁的时候不会休眠,会一直检测锁的状态。
  4. 自旋锁比较适合保护变量赋值、函数调用等场景。

2. 自旋锁相关接口函数

1. 销毁自旋锁
int   pthread_spin_destroy(pthread_spinlock_t *);
2. 初始化自旋锁
int   pthread_spin_init(pthread_spinlock_t *, int);
3. 自旋锁上锁(阻塞)
int   pthread_spin_lock(pthread_spinlock_t *);
4. 自旋锁上锁(非阻塞)
int   pthread_spin_trylock(pthread_spinlock_t *);
5. 自旋锁解锁
int   pthread_spin_unlock(pthread_spinlock_t *);
以上函数成功都返回0.

pthread_spin_init 函数的pshared参数表示进程共享属性,表明自旋锁是如何获取的,如果它设为PTHREAD_PROCESS_SHARED,则自旋锁能被,可以访问锁底层内存的线程所获取,即使那些线程属于不同的进程。否则pshared参数设为PTHREAD_PROCESS_PRIVATE,自旋锁就只能被初始化该锁的进程内部的线程访问到。

如果自旋锁当前在解锁状态,pthread_spin_lock函数不要自旋就可以对它加锁,试图对没有加锁的自旋锁进行解锁,结果是未定义的。需要注意,不要在持有自旋锁情况下可能会进入休眠状态的函数,如果调用了这些函数,会浪费CPU资源,其他线程需要获取自旋锁需要等待的时间更长了。

3. 自旋锁运用模板

下面代码创建了两个线程,分别访问一个全局变量,这里采用自旋锁进行保护。

#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <dirent.h>
#include <stdlib.h>
#include <pthread.h>

pthread_spinlock_t spinlock;

int data;
/*
线程工作函数
*/
void *thread_work_func(void *dev)
{
    while(1)
    {
        pthread_spin_lock(&spinlock); //上锁
        printf("data=%d\n",data);
        pthread_spin_unlock(&spinlock); //解锁
        sleep(1);
    }
}

/*
线程工作函数
*/
void *thread_work_func2(void *dev)
{
    while(1)
    {
        pthread_spin_lock(&spinlock); //上锁
        data++;
        pthread_spin_unlock(&spinlock); //解锁
        sleep(1);
    }
}

int main(int argc,char **argv)
{   
    //初始化自旋锁
    pthread_spin_init(&spinlock,PTHREAD_PROCESS_PRIVATE);

    /*1. 创建子线程1*/
    pthread_t thread_id;
    if(pthread_create(&thread_id,NULL,thread_work_func,NULL)!=0)
    {
        printf("子线程1创建失败.\n");
        return -1;
    }
    /*2. 创建子线程2*/
    pthread_t thread_id2;
    if(pthread_create(&thread_id2,NULL,thread_work_func2,NULL)!=0)
    {
        printf("子线程2创建失败.\n");
        return -1;
    }

    /*3. 等待线程的介绍*/
    pthread_join(thread_id,NULL);
    pthread_join(thread_id2,NULL);

    //销毁自旋锁
    pthread_spin_destroy(&spinlock);
    return 0;
}
目录
相关文章
|
3月前
|
监控 Java 测试技术
Java并发编程最佳实践:设计高性能的多线程系统
Java并发编程最佳实践:设计高性能的多线程系统
65 1
|
19天前
|
安全 程序员 API
|
1月前
|
监控 安全 算法
线程死循环确实是多线程编程中的一个常见问题,它可能导致应用程序性能下降,甚至使整个系统变得不稳定。
线程死循环是多线程编程中常见的问题,可能导致性能下降或系统不稳定。通过代码审查、静态分析、日志监控、设置超时、使用锁机制、测试、选择线程安全的数据结构、限制线程数、使用现代并发库及培训,可有效预防和解决死循环问题。
53 1
|
1月前
|
监控 安全 算法
线程死循环是多线程编程中的常见问题,可能导致应用性能下降甚至系统不稳定。
【10月更文挑战第6天】线程死循环是多线程编程中的常见问题,可能导致应用性能下降甚至系统不稳定。为了解决这一问题,可以通过代码审查、静态分析、添加日志监控、设置超时机制、使用锁和同步机制、进行全面测试、选用线程安全的数据结构、限制线程数量、利用现代并发库,并对团队进行培训等方法来预防和减少死循环的发生。尽管如此,多线程编程的复杂性仍需要持续监控和维护以确保系统稳定。
50 3
|
1月前
|
资源调度 Linux 调度
Linux C/C++之线程基础
这篇文章详细介绍了Linux下C/C++线程的基本概念、创建和管理线程的方法,以及线程同步的各种机制,并通过实例代码展示了线程同步技术的应用。
29 0
Linux C/C++之线程基础
|
1月前
|
Java API
【多线程】乐观/悲观锁、重量级/轻量级锁、挂起等待/自旋锁、公平/非公锁、可重入/不可重入锁、读写锁
【多线程】乐观/悲观锁、重量级/轻量级锁、挂起等待/自旋锁、公平/非公锁、可重入/不可重入锁、读写锁
32 0
|
1月前
|
安全 Linux
Linux线程(十一)线程互斥锁-条件变量详解
Linux线程(十一)线程互斥锁-条件变量详解
|
3月前
|
存储 设计模式 NoSQL
Linux线程详解
Linux线程详解
|
3月前
|
存储 安全 Unix
并发编程基础:使用POSIX线程(pthread)进行多线程编程。
并发编程基础:使用POSIX线程(pthread)进行多线程编程。
86 0
|
3月前
|
负载均衡 Linux 调度
在Linux中,进程和线程有何作用?
在Linux中,进程和线程有何作用?