合理地配置线程池

简介: 合理地配置线程池

合理地配置线程池

要想合理地配置线程池,就必须首先分析任务特性,可以从以下几个角度来分析。

  • 任务的性质:CPU密集型任务、IO密集型任务和混合型任务。
  • 任务的优先级:高、中和低。
  • 任务的执行时间:长、中和短。
  • 任务的依赖性:是否依赖其他系统资源,如数据库连接。

性质不同的任务可以用不同规模的线程池分开处理。

CPU密集型任务应配置尽可能小的线程,如配置N*cpu+1个线程的线程池。

IO密集型任务线程并不是一直在执行任务,则应配置尽可能多的线程,如2*Ncpu。

混合型的任务,如果可以拆分,将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐量
将高于串行执行的吞吐量。如果这两个任务执行时间相差太大,则没必要进行分解。

可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数。

优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。它可以让优先级高的任务先执行。

注意 如果一直有优先级高的任务提交到队列里,那么优先级低的任务可能永远不能执行。

执行时间不同的任务可以交给不同规模的线程池来处理,或者可以使用优先级队列,让执行时间短的任务先执行。

依赖数据库连接池的任务,因为线程提交SQL后需要等待数据库返回结果,等待的时间越长,则CPU空闲时间就越长,那么线程数应该设置得越大,这样才能更好地利用CPU。建议使用有界队列。有界队列能增加系统的稳定性和预警能力,可以根据需要设大一点儿,比如几千。有一次,我们系统里后台任务线程池的队列和线程池全满了,不断抛出抛弃任务的异常,通过排查发现是数据库出现了问题,导致执行SQL变得非常缓慢,因为后台任务线程池里的任务全是需要向数据库查询和插入数据的,所以导致线程池里的工作线程全部阻塞,任务积压在线程池里。如果当时我们设置成无界队列,那么线程池的队列就会越来越多,有可能会撑满内存,导致整个系统不可用,而不只是后台任务出现问题。当然,我们的系统所有的任务是用单独的服务器部署的,我们使用不同规模的线程池完成不同类型的任务,但是出现这样问题时也会影响到其他任务。

线程池的监控

如果在系统中大量使用线程池,则有必要对线程池进行监控,方便在出现问题时,可以根据线程池的使用状况快速定位问题。可以通过线程池提供的参数进行监控,在监控线程池的时候可以使用以下属性。

  • taskCount:线程池需要执行的任务数量。
  • completedTaskCount:线程池在运行过程中已完成的任务数量,小于或等于taskCount。
  • largestPoolSize:线程池里曾经创建过的最大线程数量。通过这个数据可以知道线程池是否曾经满过。如该数值等于线程池的最大大小,则表示线程池曾经满过。
  • getPoolSize:线程池的线程数量。如果线程池不销毁的话,线程池里的线程不会自动销毁,所以这个大小只增不减。
  • getActiveCount:获取活动的线程数。

通过扩展线程池进行监控。可以通过继承线程池来自定义线程池,重写线程池的beforeExecute、afterExecute和terminated方法,也可以在任务执行前、执行后和线程池关闭前执行一些代码来进行监控。例如,监控任务的平均执行时间、最大执行时间和最小执行时间等。

相关文章
|
7月前
|
Java 调度 Spring
SpringBoot实现多线程定时任务动态定时任务配置文件配置定时任务
SpringBoot实现多线程定时任务动态定时任务配置文件配置定时任务
697 0
|
存储 算法 Java
线程池最佳线程数量到底要如何配置?
线程池最佳线程数量到底要如何配置?
线程池最佳线程数量到底要如何配置?
|
4月前
|
消息中间件 Java 大数据
"深入理解Kafka单线程Consumer:核心参数配置、Java实现与实战指南"
【8月更文挑战第10天】在大数据领域,Apache Kafka以高吞吐和可扩展性成为主流数据流处理平台。Kafka的单线程Consumer因其实现简单且易于管理而在多种场景中受到欢迎。本文解析单线程Consumer的工作机制,强调其在错误处理和状态管理方面的优势,并通过详细参数说明及示例代码展示如何有效地使用KafkaConsumer类。了解这些内容将帮助开发者优化实时数据处理系统的性能与可靠性。
108 7
|
5月前
|
Java Spring
spring boot 中默认最大线程连接数,线程池数配置查看
spring boot 中默认最大线程连接数,线程池数配置查看
387 4
|
5月前
|
安全 算法 Java
Java面试题:如何诊断和解决Java应用程序中的内存泄漏问题?如何实现一个线程安全的计数器?如何合理配置线程池以应对不同的业务场景?
Java面试题:如何诊断和解决Java应用程序中的内存泄漏问题?如何实现一个线程安全的计数器?如何合理配置线程池以应对不同的业务场景?
38 0
|
5月前
|
Java Redis 数据安全/隐私保护
Redis14----Redis的java客户端-jedis的连接池,jedis本身是线程不安全的,并且频繁的创建和销毁连接会有性能损耗,最好用jedis连接池代替jedis,配置端口,密码
Redis14----Redis的java客户端-jedis的连接池,jedis本身是线程不安全的,并且频繁的创建和销毁连接会有性能损耗,最好用jedis连接池代替jedis,配置端口,密码
|
7月前
|
分布式计算 Java Hadoop
NameNode 处理线程配置(心跳并发)
NameNode线程池处理客户端和数据节点请求,如读写文件及心跳、块报告。通过调整`dfs.namenode.handler.count`(默认10,示例设为21)在`hdfs-site.xml`中可控制并发处理能力。线程数过多或过少都可能影响性能,需平衡资源使用并进行基准测试以确定最佳值。合理线程数可通过公式`int(math.log(N) * 20)`计算,N为服务器数量。例如,3台服务器的计算结果为21。
199 4
|
6月前
|
消息中间件
RabbitMQ配置多线程消费
RabbitMQ配置多线程消费
364 0
|
7月前
|
关系型数据库 MySQL Java
实时计算 Flink版产品使用合集之同步MySQL数据到Hologres时,配置线程池的大小该考虑哪些
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
前端开发 定位技术
前端学习笔记202305学习笔记第二十三天-地图单线程配置
前端学习笔记202305学习笔记第二十三天-地图单线程配置
101 0
前端学习笔记202305学习笔记第二十三天-地图单线程配置