我画了35张图就是为了让你深入 AQS(二)

简介: 谈到并发,我们不得不说AQS(AbstractQueuedSynchronizer),所谓的AQS即是抽象的队列式的同步器,内部定义了很多锁相关的方法,我们熟知的ReentrantLock、ReentrantReadWriteLock、CountDownLatch、Semaphore等都是基于AQS来实现的。

线程一释放锁

现在来分析下释放锁的过程,首先是线程一释放锁,释放锁后会唤醒head节点的后置节点,也就是我们现在的线程二,具体操作流程如下:

10.png

执行完后等待队列数据如下:

12.png


此时线程二已经被唤醒,继续尝试获取锁,如果获取锁失败,则会继续被挂起。如果获取锁成功,则AQS中数据如图:

13.png


接着还是一步步拆解来看,先看看线程一释放锁的代码:

java.util.concurrent.locks.AbstractQueuedSynchronizer.release()

public final boolean release(int arg) {
    if (tryRelease(arg)) {
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
        return true;
    }
    return false;
}

这里首先会执行tryRelease()方法,这个方法具体实现在ReentrantLock中,如果tryRelease执行成功,则继续判断head节点的waitStatus是否为0,前面我们已经看到过,headwaitStatueSIGNAL(-1),这里就会执行unparkSuccessor()方法来唤醒head的后置节点,也就是我们上面图中线程二对应的Node节点。

此时看ReentrantLock.tryRelease()中的具体实现:

protected final boolean tryRelease(int releases) {
    int c = getState() - releases;
    if (Thread.currentThread() != getExclusiveOwnerThread())
        throw new IllegalMonitorStateException();
    boolean free = false;
    if (c == 0) {
        free = true;
        setExclusiveOwnerThread(null);
    }
    setState(c);
    return free;
}

执行完ReentrantLock.tryRelease()后,state被设置成0,Lock对象的独占锁被设置为null。此时看下AQS中的数据:

14.png

接着执行java.util.concurrent.locks.AbstractQueuedSynchronizer.unparkSuccessor()方法,唤醒head的后置节点:

private void unparkSuccessor(Node node) {
    int ws = node.waitStatus;
    if (ws < 0)
        compareAndSetWaitStatus(node, ws, 0);
    Node s = node.next;
    if (s == null || s.waitStatus > 0) {
        s = null;
        for (Node t = tail; t != null && t != node; t = t.prev)
            if (t.waitStatus <= 0)
                s = t;
    }
    if (s != null)
        LockSupport.unpark(s.thread);
}

这里主要是将head节点的waitStatus设置为0,然后解除head节点next的指向,使head节点空置,等待着被垃圾回收。

此时重新将head指针指向线程二对应的Node节点,且使用LockSupport.unpark方法来唤醒线程二

被唤醒的线程二会接着尝试获取锁,用CAS指令修改state数据。执行完成后可以查看AQS中数据:

15.png

此时线程二被唤醒,线程二接着之前被park的地方继续执行,继续执行acquireQueued()方法。

线程二唤醒继续加锁

final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {
            final Node p = node.predecessor();
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return interrupted;
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

此时线程二被唤醒,继续执行for循环,判断线程二的前置节点是否为head,如果是则继续使用tryAcquire()方法来尝试获取锁,其实就是使用CAS操作来修改state值,如果修改成功则代表获取锁成功。接着将线程二设置为head节点,然后空置之前的head节点数据,被空置的节点数据等着被垃圾回收

此时线程三获取锁成功,AQS中队列数据如下:

16.png

等待队列中的数据都等待着被垃圾回收。

线程二释放锁/线程三加锁

线程二释放锁时,会唤醒被挂起的线程三,流程和上面大致相同,被唤醒的线程三会再次尝试加锁,具体代码可以参考上面内容。具体流程图如下:

17.png

此时AQS中队列数据如图:


18.png


公平锁实现原理

上面所有的加锁场景都是基于非公平锁来实现的,非公平锁ReentrantLock的默认实现,那我们接着来看一下公平锁的实现原理,这里先用一张图来解释公平锁非公平锁的区别:

非公平锁执行流程:

19.png

这里我们还是用之前的线程模型来举例子,当线程二释放锁的时候,唤醒被挂起的线程三线程三执行tryAcquire()方法使用CAS操作来尝试修改state值,如果此时又来了一个线程四也来执行加锁操作,同样会执行tryAcquire()方法。

这种情况就会出现竞争,线程四如果获取锁成功,线程三仍然需要待在等待队列中被挂起。这就是所谓的非公平锁线程三辛辛苦苦排队等到自己获取锁,却眼巴巴的看到线程四插队获取到了锁。

公平锁执行流程:

20.png


公平锁在加锁的时候,会先判断AQS等待队列中是存在节点,如果存在节点则会直接入队等待,具体代码如下.

公平锁在获取锁是也是首先会执行acquire()方法,只不过公平锁单独实现了tryAcquire()方法:

#java.util.concurrent.locks.AbstractQueuedSynchronizer.acquire():

public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
        selfInterrupt();
}

这里会执行ReentrantLock中公平锁的tryAcquire()方法

#java.util.concurrent.locks.ReentrantLock.FairSync.tryAcquire():

static final class FairSync extends Sync {
    protected final boolean tryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            if (!hasQueuedPredecessors() &&
                compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0)
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
}

这里会先判断state值,如果不为0且获取锁的线程不是当前线程,直接返回false代表获取锁失败,被加入等待队列。如果是当前线程则可重入获取锁。

如果state=0则代表此时没有线程持有锁,执行hasQueuedPredecessors()判断AQS等待队列中是否有元素存在,如果存在其他等待线程,那么自己也会加入到等待队列尾部,做到真正的先来后到,有序加锁。具体代码如下:

#java.util.concurrent.locks.AbstractQueuedSynchronizer.hasQueuedPredecessors():

public final boolean hasQueuedPredecessors() {
    Node t = tail;
    Node h = head;
    Node s;
    return h != t &&
        ((s = h.next) == null || s.thread != Thread.currentThread());
}

这段代码很有意思,返回false代表队列中没有节点或者仅有一个节点是当前线程创建的节点。返回true则代表队列中存在等待节点,当前线程需要入队等待。

18.png


先判断head是否等于tail,如果队列中只有一个Node节点,那么head会等于tail,接着判断head的后置节点,这里肯定会是null,如果此Node节点对应的线程和当前的线程是同一个线程,那么则会返回false,代表没有等待节点或者等待节点就是当前线程创建的Node节点。此时当前线程会尝试获取锁。

如果headtail不相等,说明队列中有等待线程创建的节点,此时直接返回true,如果只有一个节点,而此节点的线程和当前线程不一致,也会返回true

非公平锁公平锁的区别:非公平锁性能高于公平锁性能。非公平锁可以减少CPU唤醒线程的开销,整体的吞吐效率会高点,CPU也不必取唤醒所有线程,会减少唤起线程的数量

非公平锁性能虽然优于公平锁,但是会存在导致线程饥饿的情况。在最坏的情况下,可能存在某个线程一直获取不到锁。不过相比性能而言,饥饿问题可以暂时忽略,这可能就是ReentrantLock默认创建非公平锁的原因之一了。


相关文章
|
6月前
|
Java Perl
我画了近百张图来理解红黑树
我画了近百张图来理解红黑树
61 2
|
6月前
|
存储 安全 Java
《吊打面试官》从根上剖析ReentrantLock的来龙去脉
《吊打面试官》从根上剖析ReentrantLock的来龙去脉
1.5w字,30图带你彻底掌握 AQS!(建议收藏)
AQS( AbstractQueuedSynchronizer )是一个用来构建锁和同步器(所谓同步,是指线程之间的通信、协作)的框架,Lock 包中的各种锁(如常见的 ReentrantLock, ReadWriteLock), concurrent它包中的各种同步器(如 CountDownLatch, Semaphore, CyclicBarrier)都是基于 AQS 来构建,所以理解 AQS 的实现原理至关重要,AQS 也是面试中区分候选人的常见考点,我们务必要掌握,本文将用循序渐进地介绍 AQS,相信大家看完一定有收获。文章目录如下
|
存储 缓存 监控
|
设计模式 Java API
终于弄懂AQS了
大家好,我是三友~~ 相信大家对Java中的Lock锁应该不会陌生,比如ReentrantLock,锁主要是用来解决解决多线程运行访问共享资源时的线程安全问题。那你是不是很好奇,这些Lock锁api是如何实现的呢?本文就是来探讨一下这些Lock锁底层的AQS(AbstractQueuedSynchronizer)到底是如何实现的。
|
消息中间件 缓存 监控
7000字+24张图带你彻底弄懂线程池(1)
7000字+24张图带你彻底弄懂线程池(1)
|
存储 监控 Java
7000字+24张图带你彻底弄懂线程池(2)
7000字+24张图带你彻底弄懂线程池(2)
|
设计模式 算法 Java
|
算法 安全 Java
『图解Java并发编程系列』10张图告诉你Java并发多线程那些破事
『图解Java并发编程系列』10张图告诉你Java并发多线程那些破事
『图解Java并发编程系列』10张图告诉你Java并发多线程那些破事
不能再被问住了!ReentrantLock 源码、画图一起看一看!
在阅读完 JUC 包下的 AQS 源码之后,其中有很多疑问,最大的疑问就是 state 究竟是什么含义?并且 AQS 主要定义了队列的出入,但是获取资源、释放资源都是交给子类实现的,那子类是怎么实现的呢?下面开始了解 ReentrantLock。
115 0