Lakehouse湖仓

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: Lakehouse湖仓一体成为下一站灯塔,数仓、数据湖架构即将退出群聊

Lakehouse湖仓一体成为下一站灯塔,数仓、数据湖架构即将退出群聊

文章总计3326字,阅读时长约5分钟。完整总结企业数据架构发展史,深度分享KeenData LakeHouse湖仓一体敏捷数据平台的应用以及行业落地案例。不可错过!

摘要:

当前的大数据技术应用趋势表明,客户对单一的数据湖和数仓架构并不满意。近年来几乎所有的数据仓库都增加了对Parquet和ORC格式的外部表支持,这使数仓用户可以从相同的SQL引擎查询数据湖表,但它不会使数据湖表更易于管理,也不会消除仓库中数据的ETL复杂性、陈旧性和高级分析挑战。

KeenData LakeHouse(湖仓一体)作为新一代大数据技术架构,将逐渐取代单一数据湖和数据仓库架构,成为大数据架构的下一站灯塔。

KeenData LakeHouse(湖仓一体)可定义为基于低成本,可直接访问存储的数据管理系统,它结合了数据湖和数据仓库的主要优势,开放格式的低成本存储可通过前者的各种系统访问,而后者则具有强大的管理和优化功能。数据分析师和数据科学家可以在同一个数据存储中对数据进行操作,同时它也能为企业的数据治理带来更多的便利性。

相关实践学习
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
8月前
|
存储 分布式计算 物联网
美的楼宇科技基于阿里云 EMR Serverless Spark 构建 LakeHouse 湖仓数据平台
美的楼宇科技基于阿里云 EMR Serverless Spark 建设 IoT 数据平台,实现了数据与 AI 技术的有效融合,解决了美的楼宇科技设备数据量庞大且持续增长、数据半结构化、数据价值缺乏深度挖掘的痛点问题。并结合 EMR Serverless StarRocks 搭建了 Lakehouse 平台,最终实现不同场景下整体性能提升50%以上,同时综合成本下降30%。
620 58
|
存储 SQL 机器学习/深度学习
基于flink 的LakeHouse 2.0湖仓一体架构
基于flink 的LakeHouse 2.0湖仓一体架构
基于flink 的LakeHouse 2.0湖仓一体架构
|
存储 SQL 分布式计算
基于flink 的LakeHouse湖仓一体平台
基于flink 的LakeHouse湖仓一体平台
基于flink 的LakeHouse湖仓一体平台
|
3月前
|
运维 算法 机器人
阿里云AnalyticDB具身智能方案:破解机器人仿真数据、算力与运维之困
本文将介绍阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL推出的全托管云上仿真解决方案,方案采用云原生架构,为开发者提供从开发环境、仿真计算到数据管理的全链路支持。
|
18天前
|
存储 人工智能 关系型数据库
阿里云AnalyticDB for PostgreSQL 入选VLDB 2025:统一架构破局HTAP,Beam+Laser引擎赋能Data+AI融合新范式
在数据驱动与人工智能深度融合的时代,企业对数据仓库的需求早已超越“查得快”这一基础能力。面对传统数仓挑战,阿里云瑶池数据库AnalyticDB for PostgreSQL(简称ADB-PG)创新性地构建了统一架构下的Shared-Nothing与Shared-Storage双模融合体系,并自主研发Beam混合存储引擎与Laser向量化执行引擎,全面解决HTAP场景下性能、弹性、成本与实时性的矛盾。 近日,相关研究成果发表于在英国伦敦召开的数据库领域顶级会议 VLDB 2025,标志着中国自研云数仓技术再次登上国际舞台。
117 0
|
2月前
|
存储 人工智能 分布式计算
数据不用搬,AI直接炼!阿里云AnalyticDB AI数据湖仓一站式融合AI+BI
阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL版(以下简称ADB)诞生于高性能实时数仓时代,实现了PB级结构化数据的高效处理和分析。在前几年,为拥抱大数据的浪潮,ADB从传统数仓拓展到数据湖仓,支持Paimon/Iceberg/Delta Lake/Hudi湖格式,为开放的数据湖提供数据库级别的性能、可靠性和管理能力,从而更好地服务以SQL为核心的大规模数据处理和BI分析,奠定了坚实的湖仓一体基础。
|
3月前
|
存储 人工智能 关系型数据库
从“听指令”到“当参谋”,阿里云AnalyticDB GraphRAG如何让AI开窍
阿里云瑶池旗下的云原生数据仓库 AnalyticDB PostgreSQL 版 GraphRAG 技术,创新融合知识图谱动态推理+向量语义检索,通过实体关系映射与多跳路径优化,构建可应对复杂场景的决策引擎。本文将通过家电故障诊断和医疗预问诊两大高价值场景,解析其如何实现从“被动应答”到“主动决策”的跨越。
|
4月前
|
分布式计算 运维 监控
Fusion 引擎赋能:流利说如何用阿里云 Serverless Spark 实现数仓计算加速
本文介绍了流利说与阿里云合作,利用EMR Serverless Spark优化数据处理的全过程。流利说是科技驱动的教育公司,通过AI技术提升用户英语水平。原有架构存在资源管理、成本和性能等痛点,采用EMR Serverless Spark后,实现弹性资源管理、按需计费及性能优化。方案涵盖数据采集、存储、计算到查询的完整能力,支持多种接入方式与高效调度。迁移后任务耗时减少40%,失败率降低80%,成本下降30%。未来将深化合作,探索更多行业解决方案。
202 1
|
4月前
|
SQL 存储 缓存
海量数据分页查询效率低?一文解析阿里云AnalyticDB深分页优化方案
本文介绍了AnalyticDB(简称ADB)针对深分页问题的优化方案。深分页是指从海量数据中获取靠后页码的数据,常导致性能下降。ADB通过快照缓存技术解决此问题:首次查询生成结果集快照并缓存,后续分页请求直接读取缓存数据。该方案在数据导出、全量结果分页展示及业务报表并发控制等场景下表现出色。测试结果显示,相比普通分页查询,开启深分页优化后查询RT提升102倍,CPU使用率显著降低,峰值内存减少至原方案的几分之一。实际应用中,某互联网金融客户典型慢查询从30秒优化至0.5秒,性能提升60+倍。
278 1

热门文章

最新文章