深度学习入门笔记系列 ( 八 ) ——基于 tensorflow 的手写数字的识别(进阶)

简介: 基于 tensorflow 的手写数字的识别(进阶)本系列将分为 8 篇 。本次为第 8 篇 ,基于 tensorflow ,利用卷积神经网络 CNN 进行手写数字识别 。

基于 tensorflow 的手写数字的识别(进阶)

本系列将分为 8 篇 。本次为第 8 篇 ,基于 tensorflow ,利用卷积神经网络 CNN 进行手写数字识别 。

1.引言

关于 mnist 数据集的介绍和卷积神经网络的笔记在本系列文章中已有过介绍 ,有需要可见下述两篇文章 。本系列第 5 篇曾实现利用最简单的 BP 神经网络进行手写数字识别 。本系列第 6 篇简单介绍了下卷积神经网络的知识 。

基于 tensorflow 的手写数字识别

卷积神经网络(CNN)学习笔记

2.设计的 CNN 结构

本系列第 4 讲讲过实战可以大致分为 "三步走"

  1. 定义神经网络的结构和前向传播的输出结果
  2. 定义损失函数以及选择反向传播优化的算法
  3. 生成会话(tf.Session) 并在训练数据上反复运行反向传播优化算法

这里也一样 ,当然首先是设计我们针对此实战的卷积神经网络 ,设计一个最简单的如下手绘 (还是那句话 ,字丑人帅 ,拒绝反驳)

16.jpg


上图得到两次卷积池化结果后 ,将结果展平为 1 维向量 ,即1 *(7*7*64),再连接到十个节点的输出层 。

3.手动干起来 !

首先 ,需要读取 MNIST 数据集 ,利用 TF 框架自带类进行下载读取 。

17.jpg


接下来就是根据之前的 “三步走” 进行实践 。实现上述的网络结构 ,并依旧选择二次代价函数和梯度下降法 。

首先 ,定义两个函数 ,用于初始化参数 。再定义两个函数实现卷积核池化(只是便于模块化 ,提高可读性)。

18.jpg


根据上述手绘结构图进行编程实现该结构 。

19.jpg


这里有一个 dropout 操作 ,目的是训练过程中使一部分神经元参数不变 ,即不参与训练 ,相当于简化结构 ,减少过拟合 。

20.jpg


再在会话 Session 中执行 ,并保存好模型参数 。

21.jpg


测试结果(小詹在按时付费的某服务器跑的结果)如下图 :

22.jpg

上述代码获取方式 ,后台回复关键词【S8】即可 。

相关文章
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
187 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
88 3
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
181 5
|
2月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
103 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
123 0
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
281 55
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
124 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
127 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型