深度学习入门笔记系列 ( 七 ) ——循环神经网络(RNN)学习笔记

简介: 本系列将分为 8 篇 。本次为第 7 篇 ,简单的介绍下循环神经网络 。

循环神经网络(RNN)学习笔记

本系列将分为 8 篇 。本次为第 7 篇 ,简单的介绍下循环神经网络 。

1.引言

在传统的神经网络模型中 ,是从输入层到隐含层再到输出层 ,层与层之间是全连接的 ,每层之间的节点是无连接的 。但是这种普通的神经网络对于很多问题却无能无力 。例如 ,你要预测句子的下一个单词是什么 ,一般需要用到前面的单词 ,因为一个句子中前后单词并不是独立的 。于是乎 ,我们就名正言顺的引出了这篇文章的 RNN 。

2.什么是RNN

RNN(Recurrent Neural Networks)翻译为循环神经网路 ,与传统神经网络模型对比 ,RNN 一个序列当前的输出与前面的输出也有关 。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中 。重点的讲就是 ,隐藏层之间的节点之间是有连接的 ,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出 。 

11.jpg

例如上图 ,中间A表示隐含层 ,能够看出来从左到右的序列中 ,隐含层输入不仅包括输入层还有上一个序列的隐含层输出 。

3.RNN 能干些啥

理论上 ,RNN 能够对任何长度的序列数据进行处理 。但是在实践中 ,为了降低复杂性往往假设当前的状态只与前面的几个状态相关 ,下图便是一个典型的RNN :

12.jpg


坦白讲 ,小詹对 RNN 只知道基础概念 ,用的很少很少 。因为个人感觉 RNN 更多的应用到 NLP 即自然语言处理中 ,如如词向量表达 、语句合法性检查 、词性标注 。与之相对的 ,在计算机视觉领域 ,可能 CNN 及其变种使用的更为频繁 ,但是 RNN 也并非无用武之地 。

RNN 可以应用的领域大致有 :

  1. 语言模型与文本生成(Language Modeling and Generating Text)
  2. 机器翻译(Machine Translation)
  3. 语音识别(Speech Recognition)
  4. 图像描述生成 (Generating Image Descriptions)

4.LSTM网络

和 CNN 一样 ,基础的 RNN 网络也存在很多改进和拓展 ,相信大家听到比较多的是 LSTM(Long Short Term Memory)。

13.jpg


它与一般的 RNN 结构本质上并没有什么不同 ,只是使用了不同的函数去去计算隐藏层的状态 。在 LSTM 中 ,i 结构被称为 cells ,可以把 cells 看作是黑盒用以保存当前输入 xt 之前的保存的状态 ht−1 ,这些 cells 更加一定的条件决定哪些 cell 抑制哪些 cell 兴奋 。它们结合前面的状态 、当前的记忆与当前的输入 。已经证明 ,该网络结构在对长序列依赖问题中非常有效 。

最后 ,如果觉得这个系列不错 ,记得扫码关注噢 !


目录
打赏
0
0
0
0
2
分享
相关文章
云栖大会 | Terraform从入门到实践:快速构建你的第一张业务网络
云栖大会 | Terraform从入门到实践:快速构建你的第一张业务网络
鸿蒙应用开发从入门到入行 - 篇7:http网络请求
在本篇文章里,您将掌握鸿蒙开发工具DevEco的基本使用、ArkUI里的基础组件,并通过制作一个简单界面掌握使用
100 8
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
211 3
图卷积网络入门:数学基础与架构设计
网络编程懒人入门(十六):手把手教你使用网络编程抓包神器Wireshark
Wireshark是一款开源和跨平台的抓包工具。它通过调用操作系统底层的API,直接捕获网卡上的数据包,因此捕获的数据包详细、功能强大。但Wireshark本身稍显复杂,本文将以用抓包实例,手把手带你一步步用好Wireshark,并真正理解抓到的数据包的各项含义。
155 2
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
128 3
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
646 2
RNN-循环神经网络
自然语言处理(Nature language Processing, NLP)研究的主要是通过计算机算法来理解自然语言。对于自然语言来说,处理的数据主要就是人类的语言,我们在进行文本数据处理时,需要将文本进行数据值化,然后进行后续的训练工作。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等