面试必会之LinkedList源码分析

简介: 面试必会之LinkedList源码分析

注:本文所有方法和示例基于jdk1.8


概述


LinkedList是一种可以在任何位置进行高效地插入和移除操作的有序序列,它是基于双向链表实现的,是线程不安全的,允许元素为null的双向链表。


image.png


源码分析


1. 变量


/**
 * 集合元素数量
 **/
transient int size = 0;
/**
 * 指向第一个节点的指针
 * Invariant: (first == null && last == null) ||
 *            (first.prev == null && first.item != null)
 */
transient Node<E> first;
/**
 * 指向最后一个节点的指针
 * Invariant: (first == null && last == null) ||
 *            (last.next == null && last.item != null)
 */
transient Node<E> last;


2. 构造方法


/**
 * 无参构造方法
 */
public LinkedList() {
}
/**
 * 将集合c所有元素插入链表中
 */
public LinkedList(Collection<? extends E> c) {
    this();
    addAll(c);
}


3. Node节点


private static class Node<E> {
    // 值
    E item;
    // 后继
    Node<E> next;
    // 前驱
    Node<E> prev;
    Node(Node<E> prev, E element, Node<E> next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
    }
}


因为一个Node既有prev也有next,所以证明它是一个双向链表。


4. 添加元素


addAll(Collection c)


将集合c添加到链表,如果不传index,则默认是添加到尾部。如果调用addAll(int index, Collection<? extends E> c)方法,则添加到index后面。


/**
 * 将集合添加到链尾
 */
public boolean addAll(Collection<? extends E> c) {
    return addAll(size, c);
}
/** 
 * 
 */
public boolean addAll(int index, Collection<? extends E> c) {
    checkPositionIndex(index);
    // 拿到目标集合数组
    Object[] a = c.toArray();
    //新增元素的数量
    int numNew = a.length;
    //如果新增元素数量为0,则不增加,并返回false
    if (numNew == 0)
        return false;
    //定义index节点的前置节点,后置节点
    Node<E> pred, succ;
    // 判断是否是链表尾部,如果是:在链表尾部追加数据
    //尾部的后置节点一定是null,前置节点是队尾
    if (index == size) {
        succ = null;
        pred = last;
    } else {
        // 如果不在链表末端(而在中间部位)
        // 取出index节点,并作为后继节点
        succ = node(index);
        // index节点的前节点 作为前驱节点
        pred = succ.prev;
    }
    // 链表批量增加,是靠for循环遍历原数组,依次执行插入节点操作
    for (Object o : a) {
        @SuppressWarnings("unchecked") 
        // 类型转换
        E e = (E) o;
        // 前置节点为pred,后置节点为null,当前节点值为e的节点newNode
        Node<E> newNode = new Node<>(pred, e, null);
        // 如果前置节点为空, 则newNode为头节点,否则为pred的next节点
        if (pred == null)
            first = newNode;
        else
            pred.next = newNode;
        pred = newNode;
    }
    // 循环结束后,如果后置节点是null,说明此时是在队尾追加的
    if (succ == null) {
        // 设置尾节点
        last = pred;
    } else {
    //否则是在队中插入的节点 ,更新前置节点 后置节点
        pred.next = succ;
        succ.prev = pred;
    }
    // 修改数量size
    size += numNew;
    //修改modCount
    modCount++;
    return true;
}
/**
  * 取出index节点
  */ 
Node<E> node(int index) {
    // assert isElementIndex(index);
    // 如果index 小于 size/2,则从头部开始找
    if (index < (size >> 1)) {
        // 把头节点赋值给x
        Node<E> x = first;
        for (int i = 0; i < index; i++)
            // x=x的下一个节点
            x = x.next;
        return x;
    } else {
        // 如果index 大与等于 size/2,则从后面开始找
        Node<E> x = last;
        for (int i = size - 1; i > index; i--)
            x = x.prev;
        return x;
    }
}
// 检测index位置是否合法
private void checkPositionIndex(int index) {
    if (!isPositionIndex(index))
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
// 检测index位置是否合法
private boolean isPositionIndex(int index) {
    return index >= 0 && index <= size;
}


假设我们要在index=2处添加{1,2}到链表中,图解如下:


第一步:拿到index=2的前驱节点 prev=ele1


第二步:遍历集合prev.next=newNode,并实时更新prev节点以便下一次


遍历:prev=newNode


第三步:将index=2的节点ele2接上:prev.next=ele2,ele2.prev=prev


image.png


注意node(index)方法:寻找处于index的节点,有一个小优化,结点在前半段则从头开始遍历,在后半段则从尾开始遍历,这样就保证了只需要遍历最多一半结点就可以找到指定索引的结点。


addFirst(E e)方法


将e元素添加到链表并设置其为头节点(first)。


public void addFirst(E e) {
    linkFirst(e);
}
//将e链接成列表的第一个元素
private void linkFirst(E e) {
    final Node<E> f = first;
    // 前驱为空,值为e,后继为f
    final Node<E> newNode = new Node<>(null, e, f);
    first = newNode;
    //若f为空,则表明列表中还没有元素,last也应该指向newNode
    if (f == null)
        last = newNode;
    else
    //否则,前first的前驱指向newNode
        f.prev = newNode;
    size++;
    modCount++;
}


  1. 拿到first节点命名为f
  2. 新创建一个节点newNode设置其next节点为f节点
  3. 将newNode赋值给first
  4. 若f为空,则表明列表中还没有元素,last也应该指向newNode;否则,前first的前驱指向newNode。
  5. 图解如下:


image.png

image.png


addLast(E e)方法


将e元素添加到链表并设置其为尾节点(last)。


public void addLast(E e) {
    linkLast(e);
}
/**
 * 将e链接成列表的last元素
 */
void linkLast(E e) {
    final Node<E> l = last;
    // 前驱为前last,值为e,后继为null
    final Node<E> newNode = new Node<>(l, e, null);
    last = newNode;
    //最后一个节点为空,说明列表中无元素
    if (l == null)
        //first同样指向此节点
        first = newNode;
    else
        //否则,前last的后继指向当前节点
        l.next = newNode;
    size++;
    modCount++;
}


过程与linkFirst()方法类似,这里略过。


add(E e)方法


在尾部追加元素e。


public boolean add(E e) {
    linkLast(e);
    return true;
}
void linkLast(E e) {
    final Node<E> l = last;
    // 前驱为前last,值为e,后继为null
    final Node<E> newNode = new Node<>(l, e, null);
    last = newNode;
    //最后一个节点为空,说明列表中无元素
    if (l == null)
        //first同样指向此节点
        first = newNode;
    else
        //否则,前last的后继指向当前节点
        l.next = newNode;
    size++;
    modCount++;
}

add(int index, E element)方法


在链表的index处添加元素element.


public void add(int index, E element) {
    checkPositionIndex(index);
    if (index == size)
        linkLast(element);
    else
        linkBefore(element, node(index));
}
/**
 * 在succ节点前增加元素e(succ不能为空)
 */
void linkBefore(E e, Node<E> succ) {
    // assert succ != null;
    // 拿到succ的前驱
    final Node<E> pred = succ.prev;
    // 新new节点:前驱为pred,值为e,后继为succ
    final Node<E> newNode = new Node<>(pred, e, succ);
    // 将succ的前驱指向当前节点
    succ.prev = newNode;
    // pred为空,说明此时succ为首节点
    if (pred == null)
        // 指向当前节点
        first = newNode;
    else
        // 否则,将succ之前的前驱的后继指向当前节点
        pred.next = newNode;
    size++;
    modCount++;
}


linkLast方法上文有讲。


linkBefore(E e, Node<E> succ)方法步骤:


  1. 拿到succ的前驱节点
  2. 新new节点:前驱为pred,值为e,后继为succ : Node&lt;&gt;(pred, e, succ);
  3. 将succ的前驱指向当前节点
  4. pred为空,说明此时succ为首节点,first指向当前节点;否则,将succ之前的前驱的后继指向当前节点


5. 获取/查询元素


get(int index)方法


根据索引获取链表中的元素。


public E get(int index) {
    checkElementIndex(index);
    return node(index).item;
}
// 检测index合法性
private void checkElementIndex(int index) {
    if (!isElementIndex(index))
        throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
// 根据index 获取元素
Node<E> node(int index) {
    // assert isElementIndex(index);
    if (index < (size >> 1)) {
        Node<E> x = first;
        for (int i = 0; i < index; i++)
            x = x.next;
        return x;
    } else {
        Node<E> x = last;
        for (int i = size - 1; i > index; i--)
            x = x.prev;
        return x;
    }
}


node方法上文有详细讲解,这里不做介绍。


getFirst()方法


获取头节点。



public E getFirst() {
    final Node<E> f = first;
    if (f == null)
        throw new NoSuchElementException();
    return f.item;
}

getLast()方法


获取尾节点。


public E getLast() {
    final Node<E> l = last;
    if (l == null)
        throw new NoSuchElementException();
    return l.item;
}


6. 删除元素


remove(Object o)


根据Object对象删除元素。


public boolean remove(Object o) {
    // 如果o是空
    if (o == null) {
        // 遍历链表查找 item==null 并执行unlink(x)方法删除
        for (Node<E> x = first; x != null; x = x.next) {
            if (x.item == null) {
                unlink(x);
                return true;
            }
        }
    } else {
        for (Node<E> x = first; x != null; x = x.next) {
            if (o.equals(x.item)) {
                unlink(x);
                return true;
            }
        }
    }
    return false;
}
E unlink(Node<E> x) {
    // assert x != null;
    // 保存x的元素值
    final E element = x.item;
    //保存x的后继
    final Node<E> next = x.next;
    //保存x的前驱
    final Node<E> prev = x.prev;
    //如果前驱为null,说明x为首节点,first指向x的后继
    if (prev == null) {
        first = next;
    } else {
        //x的前驱的后继指向x的后继,即略过了x
        prev.next = next;
        // x.prev已无用处,置空引用
        x.prev = null;
    }
    // 后继为null,说明x为尾节点
    if (next == null) {
        // last指向x的前驱
        last = prev;
    } else {
        // x的后继的前驱指向x的前驱,即略过了x
        next.prev = prev;
        // x.next已无用处,置空引用
        x.next = null;
    }
    // 引用置空
    x.item = null;
    size--;
    modCount++;
    // 返回所删除的节点的元素值
    return element;
}


  1. 遍历链表查找 item==null 并执行unlink(x)方法删除
  2. 如果前驱为null,说明x为首节点,first指向x的后继,x的前驱的后继指向x的后继,即略过了x.
  3. 如果后继为null,说明x为尾节点,last指向x的前驱;否则x的后继的前驱指向x的前驱,即略过了x,置空x.next
  4. 引用置空:x.item = null
  5. 图解:


image.png


remove(int index)方法


根据链表的索引删除元素。


public E remove(int index) {
    checkElementIndex(index);
    //node(index)会返回index对应的元素
    return unlink(node(index));
}
E unlink(Node<E> x)  方法上文有详解。

removeFirst()方法


删除头节点。


public E removeFirst() {
    final Node<E> f = first;
    if (f == null)
        throw new NoSuchElementException();
    return unlinkFirst(f);
}
private E unlinkFirst(Node<E> f) {
    // assert f == first && f != null;
    //取出首节点中的元素
    final E element = f.item;
    //取出首节点中的后继
    final Node<E> next = f.next;
    f.item = null;
    f.next = null; // help GC
    // first指向前first的后继,也就是列表中的2号位
    first = next;
    //如果此时2号位为空,那么列表中此时已无节点
    if (next == null)
        //last指向null
        last = null;
    else
        // 首节点无前驱 
        next.prev = null;
    size--;
    modCount++;
    return element;
}


原理与添加头节点类似。


removeLast()方法


删除尾节点(last)


public E removeLast() {
    final Node<E> l = last;
    if (l == null)
        throw new NoSuchElementException();
    return unlinkLast(l);
}
private E unlinkLast(Node<E> l) {
    // assert l == last && l != null;
    // 取出尾节点中的元素
    final E element = l.item;
    // 取出尾节点中的后继
    final Node<E> prev = l.prev;
    l.item = null;
    l.prev = null; // help GC
    // last指向前last的前驱,也就是列表中的倒数2号位
    last = prev;
    // 如果此时倒数2号位为空,那么列表中已无节点
    if (prev == null)
        // first指向null
        first = null;
    else
        // 尾节点无后继
        prev.next = null;
    size--;
    modCount++;
    // 返回尾节点保存的元素值
    return element;
}


7. 修改元素


修改元素比较简单,先找到index对应节点,然后对值进行修改。


public E set(int index, E element) {
    checkElementIndex(index);
    // 获取到需要修改元素的节点
    Node<E> x = node(index);
    // 保存之前的值
    E oldVal = x.item;
    // 执行修改
    x.item = element;
    // 返回旧值
    return oldVal;
}


8. 与ArrayList的对比


优点:


  1. 不需要扩容和预留空间,空间效率高
  2. 增删效率高


缺点:


  1. 随机访问时间效率低
  2. 改查效率低



相关文章
|
存储 Java 索引
【面试题精讲】LinkedList 插入和删除元素的时间复杂度
【面试题精讲】LinkedList 插入和删除元素的时间复杂度
|
存储 缓存 Java
每日一道面试题之LinkedList VS ArrayList~
每日一道面试题之LinkedList VS ArrayList~
|
5月前
|
存储 Java 索引
【Java集合类面试二十四】、ArrayList和LinkedList有什么区别?
ArrayList基于动态数组实现,支持快速随机访问;LinkedList基于双向链表实现,插入和删除操作更高效,但占用更多内存。
|
5月前
|
存储 SQL 搜索推荐
一天十道Java面试题----第一天(面向对象-------》ArrayList和LinkedList)
这篇文章是关于Java面试的笔记,涵盖了面向对象、JDK/JRE/JVM的区别、`==`和`equals`、`final`关键字、`String`、`StringBuffer`和`StringBuilder`的区别、重载与重写、接口与抽象类、`List`与`Set`、`hashcode`与`equals`以及`ArrayList`和`LinkedList`的对比等十个主题。
【面试题精讲】LinkedList 为什么不能实现 RandomAccess 接口
【面试题精讲】LinkedList 为什么不能实现 RandomAccess 接口
|
8月前
|
存储 安全 Java
java面试基础 -- ArrayList 和 LinkedList有什么区别, ArrayList和Vector呢?
java面试基础 -- ArrayList 和 LinkedList有什么区别, ArrayList和Vector呢?
69 0
|
存储 Java 索引
每日一道面试题之ArrayList 和 LinkedList 的区别是什么?
每日一道面试题之ArrayList 和 LinkedList 的区别是什么?
|
8月前
面试题之:ArrayList和LinkedList有哪些区别
面试题之:ArrayList和LinkedList有哪些区别
|
存储 安全 Java
【面试题精讲】ArrayDeque 与 LinkedList 的区别
【面试题精讲】ArrayDeque 与 LinkedList 的区别
|
存储 安全 Java
【java常见的面试题】ArrayList 和 LinkedList 的区别是什么?
Java基础的面试题ArrayList 和 LinkedList 的区别是什么?

热门文章

最新文章