告警运维中心|构建高效精准的告警协同处理体系

本文涉及的产品
应用实时监控服务-应用监控,每月50GB免费额度
可观测监控 Prometheus 版,每月50GB免费额度
云原生网关 MSE Higress,422元/月
简介: 基于报告,ARMS 能快速的整合上下文,包括 Prometheus 监控进行监控。还有前端监控的相关数据,都会整合到报告里面,进行全方位检测来收敛相关问题。

作者:延福

在开始正式内容前,我想跟大家聊一聊为什么要做告警平台。


随着越来越多企业上云,会用到各种监控系统。这其中,用 Skywalking 做 tracing,Prometheus 做 matches,ES 或者云上日志服务,做日志相关监控,随便算算就至少有三套系统了,这其中还不包括云监控等云平台自身的监控平台。这么多监控平台如果没有统一配置告警的地方,就需要在每个系统中都维护一套联系人,这会是一个复杂的管理问题。与此同时,会非常难以形成上下文关联。比如,某一个接口出现问题,那可能云监控的拨测在报警,日志服务的日志也在报警,甚至 ARMS 应用监控也在报警。这些报警之间毫无关联,这是在云上做告警云很大的痛点。


其次无效告警非常多。什么叫无效告警?当业务系统出现严重故障时,关联系统也可能出现相关告警。而且关联告警会非常多,进而将关键信息淹没在告警海洋中,导致运维人员没办法及时对告警进行处理。最后,现在很多报警经常发生,但是没有人处理,就算有人处理了,但处理情况怎么样,关键性告警从发生到修复的时间到底有多长,每天有多少人在处理,企业的 MTTR 能不能算出来?这也是我们要做统一告警平台要解决的问题。


1.jpg


为了解决以上三个问题,ARMS 的智能告警平台应用而生。


首先,集成了众多监控系统包括 ARMS 本身的应用监控、云监控、日志服务等十几家监控系统,并提供开箱即用的智能降噪能力。同时,为了更高效的协作,整个协同的工作流都可以放在钉钉、企业微信等 IM 工具上,用户可以更加便捷的去处理和运维相关的告警。最后,提供告警分析大盘帮助用户来分析告警是不是每天都有人在处理,处理情况是什么样的。


2.jpg

告警要在脑海里形成抽象的概念,到底分成哪些步骤?


第一、从事件源产生告警事件,事件是告警发送之前的状态。事件并不会直接发送进来,它需要和告警的联系人匹配完成以后,才能生成告警流程。这张图简单的介绍了告警的过程。这也是很多同学用系统时候会经常出现的问题:配置了事件,却不知道怎么样产生告警。必须要事件加联系人才能产生告警。


3.jpg


第二、很多同学用的告警系统默认没有接入。我们也提供了灵活告警事件源的接入方式。可以按照自定义的接入方式,将事件传进来,我们来清洗字段,最后接入形成告警平台可以理解的告警。


4.jpg


工单系统举例,希望系统里产生很重要的事件也往告警平台去传时,可以把工单系统的报警事件通过 webhook 的方式发送到告警平台。识别并设置相关内容,再通过电话或短信方式通知到相应联系人。告警平台本质上是接受事件,把告警团队相关信息配到告警平台,帮用户把事件给这些团队的联系人进行匹配发送。


5.jpg

接下来,展示一下这部分能力是怎么实现的,在界面上是什么样的功能。


首先,打开 ARMS 控制台,拉到最下面告警管理模块。我们可以看到概览,其中包括大部分接入过程、事件处理流程等等。


6.jpg


现在已经用 ARMS 应用监控的用户,可以直接在其中先创建一个告警的规则。条件是应用响应时间,调用次数大于一次的时候,它就会产生一个事件。


7.png


如果是开源 Skywalking 或其他服务,需要到其中去把告警规则设好,把相应的事件传递过来。传递进来以后,在报警事件列表里面就能看到对应报警的事件了。


报警事件发送进来以后。首先会对告警事件进行降噪处理,识别告警目前最多关键词是什么样,哪些关键词高度重复,或者哪些内容是高度匹配的。同时,根据我们给出的关键词进行压缩。比如,不希望能收到来自于测试环境的告警,可以把“测试”这两个字作为屏蔽词,这样带“测试”相关屏蔽词的功能,告警事件就不会进行二次报警。


告警事件传递过来后,整个数据都会放在事件大池子里面。需要对这些事件进行分配,这个事件到底谁去接收他,谁来对这些事件做通知和排班管理。按照告警名称或者其他的字段等在告警里面预制的字段去匹配,对 Pod 状态的异常做匹配,那它会生成告警。


8.jpg


生成告警以后,可以在联系人里面去配置相关联系人,其中包括导入通讯录或配钉钉机器人等等。在通用策略里面,进一步配置,让用户配一个机器人或者真实的人去接受告警。也可以是对工单系统,比如 Jira 等平台里面去做对接,保证信息可以传递到他们那边。


9.png


配完通知策略以后,一旦产生告警,就可以收到相关的告警了。比较推荐您使用的是通过钉钉来接收相关的报警。


这里展示一下怎么样通过钉钉来接收相关的告警。比如,这是我们接收到钉钉相关告警。在接收到这个告警以后,对这条告警消息,只需有一个钉钉账号,不需要有理解这些相关信息,或者登录到系统,直接对这个告警进行认领。因为和钉钉系统深度集成,可以去认领告警,也可以在认领完以后点解决这条告警。


10.jpg


我们会把过程记录在活动里面。用户就会知道认领和关闭告警的整个过程。同时,每天会针对情况做统计,比如今天发生告警的数量,是否有处理,哪些没有处理,整体处理情况是怎么样的。如果团队比较大,有非常多运维同学,而且会有 L1 和 L2 分层运维同学的时候,可以使用排班功能进行线上排班。比如,这一周是某个同学接受告警,下一周是另外的同学。同时,也可以做升级策略的排班管理。重要告警在十分钟内没有人去做认领时,对重要告警做相应升级。


11.jpg


作为运维主管或运维总监,需要了解每天发生的这么多告警,经过一段时间后,它是不是有收敛或平均 MTTR 用了这些工具以后,有没有提升。我们提供了告警大盘,通过这个告警大盘可以了解到每天告警平均响应时间以及大家处理情况。MTTx 相关时间等统计数据会在这个大盘里面给用户进行展示,同时这个大盘是集成在 Grafana 上面,可根据实际需求,把相关数据放 Grafana 上,或者您的 Prometheus 数据源里面做二次的开发。


12.jpg


告警不仅是管理和收集的过程。很多时候虽然发现了告警。在告警处理过程中,阿里云是否可以提供一些建议参考。对此,我们也提供了相应功能来增强这一块的能力。


13.jpg


首先,基于类似应用监控的产品,提供一系列默认报警能力。一旦产生相关报警,我们会提供相关诊断能力。在如上图 20 多种场景下,会提供自动诊断报告。


举一个例子,应用的响应时间做突增,我们会生成一个直观的报表。在这个报表中,会告诉你当前突增的原因是什么。然后会整体的检测这个应用突增以后到底是哪些因素导致的。一般来说,这个诊断逻辑和普通的诊断逻辑是一样的。应用突增会去先检测一下多个主机是不是有突增,然后是不是接口有突增。这些接口如果它响应时间的数据特征是和整个应用一致,会在进一步分析这个接口里面到底又是哪些方法有突增,他传递的入参是什么,为什么有这样的突增?同时我们也会给出来一些特征请求告诉用户,慢的请求是怎样运行的。


以这个 version.json 接口为例,它是在对应的这个时刻,与应用有类似的突增。主要的核心方法就是这样一个方法,导致了接口缓慢。


14.png


同时我们结合当时打出来的堆栈可以再次确认,当时就是个 handler 方法导致了它的缓慢,那接下来我们就可以结合代码进一下进一步的优化了。


这就是 ARMS insight 针对常见问题深入分析的一个 case。基于报告,ARMS 能快速的整合上下文,包括 Prometheus 监控进行监控。还有前端监控的相关数据,都会整合到报告里面,进行全方位检测来收敛相关问题。


最后还有一个问题,用户很关心到底怎么收费。简单介绍一下,服务本身虽然存了事件,但是告警事件现在是不收费的,仅收取短信、电话、邮件基础费用。可以理解为是通道费用,不用担心更多额外费用。

15.jpg


点击此处,即可观看直播课程回放!

相关实践学习
通过云拨测对指定服务器进行Ping/DNS监测
本实验将通过云拨测对指定服务器进行Ping/DNS监测,评估网站服务质量和用户体验。
相关文章
|
2月前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第26天】Prometheus与Grafana是智能运维中的强大组合,前者是开源的系统监控和警报工具,后者是数据可视化平台。Prometheus具备时间序列数据库、多维数据模型、PromQL查询语言等特性,而Grafana支持多数据源、丰富的可视化选项和告警功能。两者结合可实现实时监控、灵活告警和高度定制化的仪表板,广泛应用于服务器、应用和数据库的监控。
295 3
|
20天前
|
运维 Prometheus 监控
🎉 WatchAlert - 开源多数据源告警引擎【运维研发必备能力】
WatchAlert 是一个开源的多数据源告警引擎,支持从 Prometheus、Elasticsearch、Kubernetes 等多种数据源获取监控数据,并根据预定义的告警规则触发告警。它具备多数据源支持、灵活的告警规则、多渠道告警通知、可扩展架构和高性能等核心特性,帮助团队更高效地监控和响应问题。项目地址:https://github.com/opsre/WatchAlert
🎉 WatchAlert - 开源多数据源告警引擎【运维研发必备能力】
|
5天前
|
运维 监控 Cloud Native
构建深度可观测、可集成的网络智能运维平台
本文介绍了构建深度可观测、可集成的网络智能运维平台(简称NIS),旨在解决云上网络运维面临的复杂挑战。内容涵盖云网络运维的三大难题、打造云原生AIOps工具集的解决思路、可观测性对业务稳定的重要性,以及产品发布的亮点,包括流量分析NPM、网络架构巡检和自动化运维OpenAPI,助力客户实现自助运维与优化。
|
16天前
|
数据采集 机器学习/深度学习 人工智能
基于AI的网络流量分析:构建智能化运维体系
基于AI的网络流量分析:构建智能化运维体系
90 13
|
15天前
|
Prometheus 运维 监控
Prometheus+Grafana+NodeExporter:构建出色的Linux监控解决方案,让你的运维更轻松
本文介绍如何使用 Prometheus + Grafana + Node Exporter 搭建 Linux 主机监控系统。Prometheus 负责收集和存储指标数据,Grafana 用于可视化展示,Node Exporter 则采集主机的性能数据。通过 Docker 容器化部署,简化安装配置过程。完成安装后,配置 Prometheus 抓取节点数据,并在 Grafana 中添加数据源及导入仪表盘模板,实现对 Linux 主机的全面监控。整个过程简单易行,帮助运维人员轻松掌握系统状态。
111 3
|
7天前
|
运维 监控 Cloud Native
云原生之运维监控实践:使用 taosKeeper 与 TDinsight 实现对 时序数据库TDengine 服务的监测告警
在数字化转型的过程中,监控与告警功能的优化对保障系统的稳定运行至关重要。本篇文章是“2024,我想和 TDengine 谈谈”征文活动的三等奖作品之一,详细介绍了如何利用 TDengine、taosKeeper 和 TDinsight 实现对 TDengine 服务的状态监控与告警功能。作者通过容器化安装 TDengine 和 Grafana,演示了如何配置 Grafana 数据源、导入 TDinsight 仪表板、以及如何设置告警规则和通知策略。欢迎大家阅读。
25 0
|
2月前
|
运维 监控
构建高效运维体系:从理论到实践
在当今快速发展的信息化时代,高效的运维体系是保障企业信息系统稳定运行的关键。本文旨在探讨如何构建一个高效、可靠的运维体系,通过分析当前运维面临的挑战,提出相应的解决策略,并结合实际案例,展示这些策略的实施效果。文章首先介绍了高效运维的重要性,接着分析了运维过程中常见的问题,然后详细阐述了构建高效运维体系的策略和步骤,最后通过一个实际案例来验证这些策略的有效性。
|
2月前
|
人工智能 运维 监控
构建高效运维体系:理论与实践的深度融合####
本文旨在探讨高效IT运维体系的构建策略,通过理论框架与实际案例并重的方式,深入剖析了现代企业面临的运维挑战。文章开篇概述了当前运维领域的新趋势,包括自动化、智能化及DevOps文化的兴起,随后详细阐述了如何将这些先进理念融入日常运维管理中,形成一套既灵活又稳定的运维机制。特别地,文中强调了数据驱动决策的重要性,以及在快速迭代的技术环境中保持持续学习与适应的必要性。最终,通过对比分析几个典型企业的运维转型实例,提炼出可复制的成功模式,为读者提供具有实操性的指导建议。 ####
|
3月前
|
运维 监控 jenkins
运维自动化实战:利用Jenkins构建高效CI/CD流程
【10月更文挑战第18天】运维自动化实战:利用Jenkins构建高效CI/CD流程
|
3月前
|
机器学习/深度学习 敏捷开发 运维
构建高效运维体系
本文旨在探讨如何通过技术创新和管理优化,构建一个高效、稳定且可持续发展的运维体系。我们将从自动化工具的应用、监控告警机制的完善、持续集成与持续部署(CI/CD)的实践、以及团队协作与沟通的强化等多个维度,深入剖析运维体系的构建过程。同时,文章将结合实际案例,分析运维过程中可能遇到的挑战及应对策略,为运维人员提供实用的指导和建议。