​LeetCode刷题实战380:O(1) 时间插入、删除和获取随机元素

简介: 算法的重要性,我就不多说了吧,想去大厂,就必须要经过基础知识和业务逻辑面试+算法面试。所以,为了提高大家的算法能力,这个公众号后续每天带大家做一道算法题,题目就从LeetCode上面选 !


今天和大家聊的问题叫做
O(1) 时间插入、删除和获取随机元素,我们先来看题面:https://leetcode-cn.com/problems/insert-delete-getrandom-o1/

24.jpg

设计一个支持在平均 时间复杂度 O(1) 下,执行以下操作的数据结构。

insert(val):当元素 val 不存在时,向集合中插入该项。remove(val):元素 val 存在时,从集合中移除该项。getRandom:随机返回现有集合中的一项。每个元素应该有相同的概率被返回。

示例

// 初始化一个空的集合。
RandomizedSet randomSet = new RandomizedSet();
// 向集合中插入 1 。返回 true 表示 1 被成功地插入。
randomSet.insert(1);
// 返回 false ,表示集合中不存在 2 。
randomSet.remove(2);
// 向集合中插入 2 。返回 true 。集合现在包含 [1,2] 。
randomSet.insert(2);
// getRandom 应随机返回 1 或 2 。
randomSet.getRandom();
// 从集合中移除 1 ,返回 true 。集合现在包含 [2] 。
randomSet.remove(1);
// 2 已在集合中,所以返回 false 。
randomSet.insert(2);
// 由于 2 是集合中唯一的数字,getRandom 总是返回 2 。
randomSet.getRandom();

解题


利用动态数组的下标索引实现常数时间内的插入和随机元素的访问,再利用哈希表实现常数时间的删除操作:将删除元素和最后一个元素交换,将最后一个元素删除

class RandomizedSet {
private:
    unordered_map<int,int> hash;//哈希实现删除
    vector<int> v;//动态数组实现插入和随机访问
public:
    /** Initialize your data structure here. */
    RandomizedSet() {
    }
    /** Inserts a value to the set. Returns true if the set did not already contain the specified element. */
    //当元素 val 不存在时,向集合中插入该项。
    bool insert(int val) {
        if(hash.find(val) != hash.end()) return false; //如果集合中已经存在val,返回false,
        v.push_back(val);//否则插入到数组末尾
        hash[val] = v.size() - 1;//
        return true;
    }
    /** Removes a value from the set. Returns true if the set contained the specified element. */
    //元素 val 存在时,从集合中移除该项。
    bool remove(int val) {
        if(hash.find(val) == hash.end()) return false;//如果集合中不存在val,返回false
        int lastPos = v.size() - 1;//数组最后一个元素位置
        int valPos = hash[val];//将被删除值和数组最后一位进行交换
        v[valPos] = v[lastPos];
        v.pop_back();//删除
        hash[v[valPos]] = valPos;//被交换的值下标发生变化,需要更新
        hash.erase(val); //哈希表中删除val的项
        return true;
    }
    /** Get a random element from the set. */
    //随机返回现有集合中的一项。每个元素应该有相同的概率被返回。
    int getRandom() {
       int size = v.size();
       int pos = rand() % size;//对下标产生随机数
       return v[pos];//数组可以根据下表返回
    }
};
/**
 * Your RandomizedSet object will be instantiated and called as such:
 * RandomizedSet* obj = new RandomizedSet();
 * bool param_1 = obj->insert(val);
 * bool param_2 = obj->remove(val);
 * int param_3 = obj->getRandom();
 */

好了,今天的文章就到这里,如果觉得有所收获,请顺手点个在看或者转发吧,你们的支持是我最大的动力 。

相关文章
|
12月前
【力扣】-- 移除链表元素
【力扣】-- 移除链表元素
125 1
|
6月前
|
机器学习/深度学习 存储 算法
【LeetCode 热题100】347:前 K 个高频元素(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 347——前 K 个高频元素的三种解法:哈希表+小顶堆、哈希表+快速排序和哈希表+桶排序。每种方法都附有清晰的思路讲解和 Go 语言代码实现。小顶堆方法时间复杂度为 O(n log k),适合处理大规模数据;快速排序方法时间复杂度为 O(n log n),适用于数据量较小的场景;桶排序方法在特定条件下能达到线性时间复杂度 O(n)。文章通过对比分析,帮助读者根据实际需求选择最优解法,并提供了完整的代码示例,是一篇非常实用的算法学习资料。
350 90
|
4月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
138 1
|
4月前
|
分布式计算 算法 Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本文讲解了两道经典的图论问题:**岛屿数量(LeetCode 200)** 和 **腐烂的橘子(LeetCode 994)**,分别通过 DFS/BFS 实现。在“岛屿数量”中,利用深度或广度优先搜索遍历二维网格,标记连通陆地并计数;“腐烂的橘子”则采用多源 BFS,模拟腐烂传播过程,计算最短时间。两者均需掌握访问标记技巧,是学习网格搜索算法的绝佳实践。
143 1
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
187 6
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
4月前
|
Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本篇博客详细解析了三道经典的动态规划问题:198. 打家劫舍(线性状态转移)、279. 完全平方数与322. 零钱兑换(完全背包问题)。通过 Go 语言实现,帮助读者掌握动态规划的核心思想及其实战技巧。从状态定义到转移方程,逐步剖析每道题的解法,并总结其异同点,助力解决更复杂的 DP 问题。适合初学者深入理解动态规划的应用场景和优化方法。
89 0
|
12月前
【LeetCode 27】347.前k个高频元素
【LeetCode 27】347.前k个高频元素
106 0
|
数据采集 负载均衡 安全
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
本文提供了多个多线程编程问题的解决方案,包括设计有限阻塞队列、多线程网页爬虫、红绿灯路口等,每个问题都给出了至少一种实现方法,涵盖了互斥锁、条件变量、信号量等线程同步机制的使用。
200 3
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
|
11月前
|
机器学习/深度学习 人工智能 自然语言处理
280页PDF,全方位评估OpenAI o1,Leetcode刷题准确率竟这么高
【10月更文挑战第24天】近年来,OpenAI的o1模型在大型语言模型(LLMs)中脱颖而出,展现出卓越的推理能力和知识整合能力。基于Transformer架构,o1模型采用了链式思维和强化学习等先进技术,显著提升了其在编程竞赛、医学影像报告生成、数学问题解决、自然语言推理和芯片设计等领域的表现。本文将全面评估o1模型的性能及其对AI研究和应用的潜在影响。
247 1
|
12月前
【LeetCode 06】203.移除链表元素
【LeetCode 06】203.移除链表元素
84 0

热门文章

最新文章