教你如何定位及优化SQL语句的性能问题(下)

简介: SQL数据库开发

select_type

每个子查询的查询类型,一些常见的查询类型。

75.png


table

查询涉及到的数据表。

如果查询使用了别名,那么这里显示的是别名,如果不涉及对数据表的操作,那么这显示为null,如果显示为尖括号括起来的就表示这个是临时表,后边的N就是执行计划中的id,表示结果来自于这个查询产生。如果是尖括号括起来的,与类似,也是一个临时表,表示这个结果来自于union查询的id为M,N的结果集。

type

访问类型

  • ALL   扫描全表数据
  • index 遍历索引
  • range 索引范围查找
  • index_subquery 在子查询中使用 ref
  • unique_subquery 在子查询中使用 eq_ref
  • ref_or_nullNull进行索引的优化的 ref
  • fulltext 使用全文索引
  • ref   使用非唯一索引查找数据
  • eq_refjoin查询中使用PRIMARY KEYorUNIQUE NOT NULL索引关联。
  • const 使用主键或者唯一索引,且匹配的结果只有一条记录。
  • system const 连接类型的特例,查询的表为系统表

77.jpg

性能从好到差依次为:system,const,eq_ref,ref,fulltext,ref_or_null,unique_subquery,index_subquery,range,index_merge,index,ALL,除了ALL之外,其他的type都可以使用到索引,除了index_merge之外,其他的type只可以用到一个索引。

所以,如果通过执行计划发现某张表的查询语句的type显示为ALL,那就要考虑添加索引,或者更换查询方式,使用索引进行查询。

possible_keys

可能使用的索引,注意不一定会使用。查询涉及到的字段上若存在索引,则该索引将被列出来。当该列为 NULL时就要考虑当前的SQL是否需要优化了。


key

显示MySQL在查询中实际使用的索引,若没有使用索引,显示为NULL。TIPS:查询中若使用了覆盖索引(覆盖索引:索引的数据覆盖了需要查询的所有数据),则该索引仅出现在key列表中。

select_type为index_merge时,这里可能出现两个以上的索引,其他的select_type这里只会出现一个。

key_length

索引长度char()、varchar()索引长度的计算公式:

(Character Set:utf8mb4=4,utf8=3,gbk=2,latin1=1) * 列长度 + 1(允许null) + 2(变长列)


其他类型索引长度的计算公式:


CREATE TABLE `student` 
( `id` int(11) unsigned NOT NULL AUTO_INCREMENT,
`name` varchar(128) NOT NULL DEFAULT '',
`age` int(11), PRIMARY KEY (`id`),
UNIQUE KEY `idx` (`name`),
KEY `idx_age` (`age`)
) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=utf8mb4;


name 索引长度为:编码为utf8mb4,列长为128,不允许为NULL,字段类型为varchar(128)key_length = 128 * 4 + 0 + 2 = 514;



78.jpg

age 索引长度:int类型占4位,允许null,索引长度为5。

78.jpg

ref

表示上述表的连接匹配条件,即哪些列或常量被用于查找索引列上的值


如果是使用的常数等值查询,这里会显示const,如果是连接查询,被驱动表的执行计划这里会显示驱动表的关联字段,如果是条件使用了表达式或者函数,或者条件列发生了内部隐式转换,这里可能显示为func

rows

返回估算的结果集数目,注意这并不是一个准确值。


extra

extra的信息非常丰富,常见的有:

  1. Using index 使用覆盖索引
  2. Using where 使用了用where子句来过滤结果集
  3. Using filesort 使用文件排序,使用非索引列进行排序时出现,非常消耗性能,尽量优化。
  4. Using temporary 使用了临时表。


一些SQL优化建议


1、SQL语句不要写的太复杂。

一个SQL语句要尽量简单,不要嵌套太多层。


2、使用『临时表』缓存中间结果。简化SQL语句的重要方法就是采用临时表暂存中间结果,这样可以避免程序中多次扫描主表,也大大减少了阻塞,提高了并发性能。

3、使用like的时候要注意是否会导致全表扫有的时候会需要进行一些模糊查询比如


select id from table where username like ‘%sql_road%’


关键词%sql_road%,由于sql_road前面用到了“%”,因此该查询会使用全表扫描,除非必要,否则不要在关键词前加%,


4、尽量避免使用!=或<>操作符

在where语句中使用!=或<>,引擎将放弃使用索引而进行全表扫描。


5、尽量避免使用 or 来连接条件

在 where 子句中使用 or 来连接条件,引擎将放弃使用索引而进行全表扫描。


--可以用
select id from t where num=10
union all
select id from t where num=20
--替代
select id from t where num=10 or num=20


6、尽量避免使用in和not in在 where 子句中使用 in和not in,引擎将放弃使用索引而进行全表扫描,可以使用existsnot exists


7、可以考虑强制查询使用索引

select * from table force index(PRI) limit 2;
--强制使用主键
select * from table force index(hollis_index) limit 2;
--强制使用索引"hollis_index"
select * from table force index(PRI,hollis_index) limit 2;
--强制使用索引"PRI和hollis_index"


8、尽量避免使用表达式、函数等操作作为查询条件


9、尽量避免大事务操作,提高系统并发能力。


10、尽量避免使用游标


11、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。


12、尽可能的使用 varchar/nvarchar 代替 char/nchar


13、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。


14、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率


15、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引

相关文章
|
1月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
172 6
|
1月前
|
SQL 关系型数据库 MySQL
为什么这些 SQL 语句逻辑相同,性能却差异巨大?
我是小假 期待与你的下一次相遇 ~
126 0
|
5月前
|
SQL 关系型数据库 PostgreSQL
CTE vs 子查询:深入拆解PostgreSQL复杂SQL的隐藏性能差异
本文深入探讨了PostgreSQL中CTE(公共表表达式)与子查询的选择对SQL性能的影响。通过分析两者底层机制,揭示CTE的物化特性及子查询的优化融合优势,并结合多场景案例对比执行效率。最终给出决策指南,帮助开发者根据数据量、引用次数和复杂度选择最优方案,同时提供高级优化技巧和版本演进建议,助力SQL性能调优。
544 1
|
6月前
|
SQL 关系型数据库 MySQL
凌晨2点报警群炸了:一条sql 执行200秒!搞定之后,我总结了一个慢SQL查询、定位分析解决的完整套路
凌晨2点报警群炸了:一条sql 执行200秒!搞定之后,我总结了一个慢SQL查询、定位分析解决的完整套路
凌晨2点报警群炸了:一条sql 执行200秒!搞定之后,我总结了一个慢SQL查询、定位分析解决的完整套路
|
6月前
|
SQL 存储 自然语言处理
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
|
8月前
|
SQL 关系型数据库 MySQL
如何优化SQL查询以提高数据库性能?
这篇文章以生动的比喻介绍了优化SQL查询的重要性及方法。它首先将未优化的SQL查询比作在自助餐厅贪多嚼不烂的行为,强调了只获取必要数据的必要性。接着,文章详细讲解了四种优化策略:**精简选择**(避免使用`SELECT *`)、**专业筛选**(利用`WHERE`缩小范围)、**高效联接**(索引和限制数据量)以及**使用索引**(加速搜索)。此外,还探讨了如何避免N+1查询问题、使用分页限制结果、理解执行计划以及定期维护数据库健康。通过这些技巧,可以显著提升数据库性能,让查询更高效流畅。
|
9月前
|
SQL 关系型数据库 OLAP
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
275 2
|
SQL
SQL中几个快速定位语句
1, 查找表或SP相互引用的对象 SELECT DISTINCT OBJECT_NAME(referencing_id) AS sp_name FROM sys.
1058 0
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
521 13