盘点开发中那些常用的MySQL优化技巧(中)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: SQL数据库开发

3、GROUP BY的优化

在默认情况下,MySQL中的GROUP BY语句会对其后出现的字段进行默认排序(非主键情况),就好比我们使用ORDER BY col1,col2,col3…所以我们在后面跟上具有相同列(与GROUP BY后出现的col1,col2,col3…相同)ORDER BY子句并没有影响该SQL的实际执行性能。那么就会有这样的情况出现,我们对查询到的结果是否已经排序不在乎时,可以使用ORDER BY NULL禁止排序达到优化目的。下面使用EXPLAIN命令分析SQL。Java知音公众号内回复“面试题聚合”,送你一份面试题宝典在user_1中执行select id, sum(money) form user_1 group by name时,会默认排序(注意group by后的column是非index才会体现group by的排序,如果是primary key,那之前说过了InnoDB默认是按照主键index排好序的)

mysql> select*from user_1;
+----+----------+-------+
| id | name     | money |
+----+----------+-------+
|  1 | Zhangsan |    32 |
|  2 | Lisi     |    65 |
|  3 | Wangwu   |    44 |
|  4 | Lijian   |   100 |
+----+----------+-------+
4 rows in set

不禁止排序,即不使用ORDER BY NULL时:有明显的Using filesort。

1.jpg

当使用ORDER BY NULL禁止排序后,Using filesort不存在

2.jpg

4、ORDER BY 的优化  

MySQL可以使用一个索引来满足ORDER BY 子句的排序,而不需要额外的排序,但是需要满足以下几个条件:

(1)WHERE 条件和OREDR BY 使用相同的索引:即key_part1与key_part2是复合索引,where中使用复合索引中的key_part1

SELECT*FROM user WHERE key_part1=1 ORDER BY key_part1 DESC, key_part2 DESC;

(2)而且ORDER BY顺序和索引顺序相同:

SELECT*FROM user ORDER BY key_part1, key_part2;

(3)并且要么都是升序要么都是降序:

SELECT*FROM user ORDER BY key_part1 DESC, key_part2 DESC;

但以下几种情况则不使用索引:

(1)ORDER BY中混合ASC和DESC:

SELECT*FROM user ORDER BY key_part1 DESC, key_part2 ASC;

(2)查询行的关键字与ORDER BY所使用的不相同,即WHERE 后的字段与ORDER BY 后的字段是不一样的

SELECT*FROM user WHERE key2 = ‘xxx’ ORDER BY key1;

(3)ORDER BY对不同的关键字使用,即ORDER BY后的关键字不相同

SELECT*FROM user ORDER BY key1, key2;


相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
19天前
|
SQL 关系型数据库 MySQL
MySQL慢查询优化、索引优化、以及表等优化详解
本文详细介绍了MySQL优化方案,包括索引优化、SQL慢查询优化和数据库表优化,帮助提升数据库性能。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
MySQL慢查询优化、索引优化、以及表等优化详解
|
24天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
56 3
|
26天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
52 1
|
2月前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
80 9
|
28天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
155 1
|
2月前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
63 5
|
2月前
|
SQL JavaScript 关系型数据库
node博客小项目:接口开发、连接mysql数据库
【10月更文挑战第14天】node博客小项目:接口开发、连接mysql数据库
|
2月前
|
存储 关系型数据库 MySQL
优化 MySQL 的锁机制以提高并发性能
【10月更文挑战第16天】优化 MySQL 锁机制需要综合考虑多个因素,根据具体的应用场景和需求进行针对性的调整。通过不断地优化和改进,可以提高数据库的并发性能,提升系统的整体效率。
82 1
|
2月前
|
缓存 关系型数据库 MySQL
一文彻底弄懂MySQL优化之深度分页
【10月更文挑战第24天】本文深入探讨了 MySQL 深度分页的原理、常见问题及优化策略。首先解释了深度分页的概念及其带来的性能和资源问题。接着介绍了基于偏移量(OFFSET)和限制(LIMIT)以及基于游标的分页方法,并分析了它们的优缺点。最后,提出了多种优化策略,包括合理创建索引、优化查询语句和使用数据缓存,帮助提升分页查询的性能和系统稳定性。
131 1
|
2月前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万数据量的优化实录
【10月更文挑战第6天】 在现代互联网应用中,随着用户量的增加和业务逻辑的复杂化,数据量级迅速增长,这对后端数据库系统提出了严峻的挑战。尤其是当数据量达到百万级别时,传统的数据库解决方案往往会遇到性能瓶颈。本文将分享一次使用MySQL与Redis协同优化大规模数据统计的实战经验。
135 3