容器化部署实践之Django应用部署(二)

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 容器化部署实践之Django应用部署(二)

上一篇文章有些同学感觉不够详细理解起来有些困难,我再来简单解释一下。


我们在开发的情况下:

   浏览器请求→ python manage.py runserver(比如8000) → 到应用代码(Django,Flask等等)


部署到线上的情况:

   域名请求→ DNS解析→ 服务器IP→ Nginx(80端口)→ 代理转发 127.0.0.1:8000(IP不一定是127.0.0.1)→ 到项目应用代码逻辑。


在整个部署过程中,我们加了一层docker来进行隔离部署,不仅解决了开发(dev)测试(test)线上(prod)多个环境不一致的问题,也达到了一次封装,处处运行的目的,我们日常使用virtualenv进行Python包环境隔离都不需要了,这在多人开发模式下面非常方便。

我其实在docker入门篇Docker 容器化部署实践--入门已经讲过了。至于新手的话如果觉得一开始觉得不太容易上手,可以考虑去掉docker这个中间环节,直接把服务跑在Linux机器上面。


解释完上面,接下来进入我们今天的主题:

Django + Nginx + Gunicorn 部署


Gunicorn


Gunicorn,是「Green Unicorn」,最初来于Ruby社区的Unicorn,是用于Unix的Python WSGI HTTP服务器,Gunicorn与各种Web框架广泛兼容,简单轻便。

我们之所以使用使用uWSGI或Gunicorn原因就是Flask,Django自带的WSGI服务性能不够好,一般用在测试开发环境用,线上主要使用更为高性能的WSGI服务。

作为介绍我这里引用一个官方例子:

$ pip install gunicorn
  $ cat myapp.py
    def app(environ, start_response):
        data = b"Hello, World!\n"
        start_response("200 OK", [
            ("Content-Type", "text/plain"),
            ("Content-Length", str(len(data)))
        ])
        return iter([data])
  $ gunicorn -w 4 myapp:app
  [2014-09-10 10:22:28 +0000] [30869] [INFO] Listening at: http://127.0.0.1:8000 (30869)
  [2014-09-10 10:22:28 +0000] [30869] [INFO] Using worker: sync
  [2014-09-10 10:22:28 +0000] [30874] [INFO] Booting worker with pid: 30874
  [2014-09-10 10:22:28 +0000] [30875] [INFO] Booting worker with pid: 30875
  [2014-09-10 10:22:28 +0000] [30876] [INFO] Booting worker with pid: 30876
  [2014-09-10 10:22:28 +0000] [30877] [INFO] Booting worker with pid: 30877


装好gunicorn之后,我们可以通过gunicorn -h 进行查看配置,通常情况下为了方便,我们都是把gunicorn放在配置文件中。

这里提一点,gunicorn中有一个--statsd-host 这个使得可以用另外一种方式来跟踪请求,我之前在监控一文说到过statsd,大家可以参看我之前写的博客「使用Statsd+Graphite+Grafana搭建web监控系统」,点击阅读原文。


同uWSGI一样我给一个简单的supervisor例子:


# gunicorn.conf.py
import multiprocessing
import socket
bind = '0.0.0.0:9527'
workers = multiprocessing.cpu_count() * 2 + 1 
worker_class = 'gevent' # 搭配gevent运行
daemon = False
proc_name = 'yourproject'
pidfile = '/data/run/gunicorn.pid'
loglevel = 'error'
accesslog = '/data/yourproject/supervisor/gunicorn.access.log'
errorlog = '/data/yourproject/supervisor/gunicorn.error.log'
max_requests = 200000
# StatsD integration
# StatsD host is omitted here, please append `--statsd-host` to gunicorn
# statsd_host = 'localhost:8125'
statsd_prefix = socket.gethostname()

上面说下为什么worker数目是CPU核数*2+1,这个没有太多科学依据,主要是根据一个work进行读写操作,另一个work处理请求,具体可以根据自己情况进行配置。更多特殊配置,大家可以进行自行查阅文档。


supervisor & nginx & docker-compose


supervisor同上篇文章使用Docker容器化部署实践之Django应用部署(一)一样,唯一变化的就是我们command从uUWSGI变为了gunicorn,这里我就不多列出来supervisor完整配置了。


[program:gunicorn]
command=/path/to/gunicorn main:application -c /path/to/gunicorn.conf.py
directory=/path/to/project
user=nobody
autostart=true
autorestart=true
redirect_stderr=true


Nginx同上篇文章一样,我这里列一个简单的样例:


server {
    listen 80;
    server_name example.org;
    access_log  /var/log/nginx/example.log;
    location / {
        proxy_pass http://127.0.0.1:8000;
        proxy_set_header Host $host;
        proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
    }
  }


docker-compose配置同之前文章一样,内容较多,就不列出来了。可以参考上篇文章使用Docker容器化部署实践之Django应用部署(一)的配置。


说到最后

今天我们主要阐述了Django部署使用的第二种方式,实际上这个过程和没有docker几乎差不多的,你可以剥离掉docker,对你整个过程没有太大影响。

同样的我整个部署过程阐述的过程比较简单,实际情况会多少有些出入,不知道你听懂了么?欢迎大家给我留言,我们一起讨论。

Docker容器化部署相关我们下一篇我们聊聊Kubernets这个大杀器。

相关文章
|
2月前
|
Kubernetes Docker Python
Docker 与 Kubernetes 容器化部署核心技术及企业级应用实践全方案解析
本文详解Docker与Kubernetes容器化技术,涵盖概念原理、环境搭建、镜像构建、应用部署及监控扩展,助你掌握企业级容器化方案,提升应用开发与运维效率。
454 108
|
2月前
|
运维 监控 数据可视化
小白也能部署应用,3个免费的容器化部署工具测评
本文对比了三款容器化部署工具:Docker Compose、Portainer 和 Websoft9。Docker Compose 适合开发者编排多容器应用,Portainer 提供图形化管理界面,而 Websoft9 则面向中小企业和非技术人员,提供一键部署与全流程运维支持,真正实现“开箱即用”。三款工具各有定位,Websoft9 更贴近大众用户需求。
小白也能部署应用,3个免费的容器化部署工具测评
|
4月前
|
运维 监控 数据可视化
容器化部署革命:Docker实战指南
容器化部署革命:Docker实战指南
|
4月前
|
存储 运维 安全
Docker化运维:容器部署的实践指南
Docker化运维:容器部署的实践指南
|
2月前
|
运维 数据可视化 C++
2025 热门的 Web 化容器部署工具对比:Portainer VS Websoft9
2025年热门Web化容器部署工具对比:Portainer与Websoft9。Portainer以轻量可视化管理见长,适合技术团队运维;Websoft9则提供一站式应用部署与容器管理,内置丰富开源模板,降低中小企业部署门槛。两者各有优势,助力企业提升容器化效率。
198 1
2025 热门的 Web 化容器部署工具对比:Portainer VS Websoft9
|
3月前
|
Cloud Native 中间件 调度
云原生信息提取系统:容器化流程与CI/CD集成实践
本文介绍如何通过工程化手段解决数据提取任务中的稳定性与部署难题。结合 Scrapy、Docker、代理中间件与 CI/CD 工具,构建可自动运行、持续迭代的云原生信息提取系统,实现结构化数据采集与标准化交付。
109 1
云原生信息提取系统:容器化流程与CI/CD集成实践
|
5月前
|
关系型数据库 MySQL 数据库
【赵渝强老师】数据库不适合Docker容器化部署的原因
本文介绍了在Docker中部署MySQL数据库并实现数据持久化的方法,同时分析了数据库不适合容器化的原因。通过具体步骤演示如何拉取镜像、创建持久化目录及启动容器,确保数据安全存储。然而,由于数据安全性、硬件资源争用、网络带宽限制及额外隔离层等问题,数据库服务并不完全适合Docker容器化部署。文中还提到数据库一旦部署通常无需频繁升级,与Docker易于重构和重新部署的特点不符。
291 18
【赵渝强老师】数据库不适合Docker容器化部署的原因
|
4月前
|
Ubuntu 安全 数据安全/隐私保护
在Docker容器中部署GitLab服务器的步骤(面向Ubuntu 16.04)
现在,你已经成功地在Docker上部署了GitLab。这就是我们在星际中的壮举,轻松如同土豆一样简单!星际旅行结束,靠岸,打开舱门,迎接全新的代码时代。Prepare to code, astronaut!
367 12

相关产品

  • 容器服务Kubernetes版
  • 推荐镜像

    更多