Python可视化学习(饼状图,坐标系...)

简介: Python可视化学习(饼状图,坐标系...)

写在前面的话


01    今天资源君带大家学习一下Python的可视化,何谓可视化呢?我们常常听说Python的数据分析,数据分析中很重要的一个就是将数据展示出来,如何展示出来呢?这就得靠我们的Python可视化了,我们可以对我们的数据进行分析后,展示到柱形图,扇形图等图像上,方便被人一眼就能看到数据的走向和数据的详细情况,废话不多说,我们直接来学习!


python可视化

02

代码的讲解,我都直接写在代码的注释里面了,方便大家的阅读和理解




#导入两个库
import numpy as np
import matplotlib.pyplot as plt
#第一个参数就是x轴的初始值 
#第二个参数是x轴的终止值
#第三个返回num均匀分布的样本,也就是0-12的区间取多少个点,如果为曲线的最好数值大一点
x = np.linspace(0, 12, 50)
y = np.sin(x) #函数
z = np.cos(x) # 函数
plt.figure(figsize=(8, 4))#解释在下面
plt.plot(x, y, label="$sin(x)$", color="red", linewidth=2) #描绘函数图像以及标注
plt.plot(x, z, "b--", label="$cos(X^2)$")# b--为虚线的意思
plt.xlabel("Time(s)") #x轴的名字
plt.ylabel("Volt1")
plt.title("PyPlot First Example")
#第一个参数是表示y轴的开始值
#第二个参数是表示y轴的结束值
plt.ylim(-1.2, 1, 2) 
plt.legend()
plt.show()



这里我要来补充一个知识


figure语法说明


figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None,


frameon=True)


num:图像编号或名称,数字为编号 ,字符串为名称


figsize:指定figure的宽和高,单位为英寸;


dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80 1英寸等于2.5cm,A4纸是 21*30cm的纸张


facecolor:背景颜色


edgecolor:边框颜色


frameon:是否显示边框


最后显示的效果图:


image.png


上面的写出来的是一个坐标系


接下来我们来看看扇形图是如何画出来的


import numpy as np
import matplotlib.pyplot as plt
labels = 'A', 'B', 'C', 'D'
fracs = [15, 30.55, 44.44, 10]
explode = [0, 0, 0, 0]  # 0.1 凸出这部分,
plt.axes(aspect=1)  # set this , Figure is round, otherwise it is an ellipse
# autopct ,show percet
plt.pie(x=fracs, labels=labels, explode=explode, autopct='%3.1f %%',shadow=True, labeldistance=1.1, startangle=90,pctdistance=0.6)
plt.show()


labeldistance:文本的位置离远点有多远,1.1指1.1倍半径的位置


autopct:圆里面的文本格式,%3.1f%%表示小数有三位,整数有一位的浮点数

shadow:饼是否有阴影


startangle:起始角度,0,表示从0开始逆时针转,为第一块。一般选择从90度开始比较好看


pctdistance:百分比的text离圆心的距离


patches, l_texts, p_texts:为了得到饼图的返回值,


p_texts:饼图内部的文本


l_texts:饼图外label的文本


我们来看看效果图


image.png

相关文章
|
1月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
258 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
1月前
|
机器学习/深度学习 数据可视化 Python
Python实用记录(三):通过netron可视化模型
使用Netron工具在Python中可视化神经网络模型,包括安装Netron、创建文件和运行文件的步骤。
34 2
Python实用记录(三):通过netron可视化模型
|
14天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
1月前
|
机器学习/深度学习 人工智能 架构师
Python学习圣经:从0到1,精通Python使用
尼恩架构团队的大模型《LLM大模型学习圣经》是一个系统化的学习系列,初步规划包括以下内容: 1. **《Python学习圣经:从0到1精通Python,打好AI基础》** 2. **《LLM大模型学习圣经:从0到1吃透Transformer技术底座》**
Python学习圣经:从0到1,精通Python使用
|
1月前
|
数据采集 Web App开发 数据可视化
Python爬虫教程:Selenium可视化爬虫的快速入门
Python爬虫教程:Selenium可视化爬虫的快速入门
|
1月前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
390 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
1月前
|
机器学习/深度学习 人工智能 架构师
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
201 0
|
1月前
|
机器学习/深度学习 缓存 Linux
python环境学习:pip介绍,pip 和 conda的区别和联系。哪个更好使用?pip创建虚拟环境并解释venv模块,pip的常用命令,conda的常用命令。
本文介绍了Python的包管理工具pip和环境管理器conda的区别与联系。pip主要用于安装和管理Python包,而conda不仅管理Python包,还能管理其他语言的包,并提供强大的环境管理功能。文章还讨论了pip创建虚拟环境的方法,以及pip和conda的常用命令。作者推荐使用conda安装科学计算和数据分析包,而pip则用于安装无法通过conda获取的包。
75 0
|
1月前
|
Python
python学习之旅(基础篇看这篇足够了!!!)(下)
python学习之旅(基础篇看这篇足够了!!!)(下)
27 0
下一篇
无影云桌面