为了能够更好地控制多线程,JDK提供了一套Executor框架,帮助开发人员有效地进行线程控制。Executor框架无论是newFixedThreadPool()方法、newSingleThreadExecutor()方法还是ewCachedThreadPool()方法,其内部实现均使用了 ThreadPoolExecutor:
public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); } public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); } public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); }
由以上线程池的实现代码可以知道,它们只是对 ThreadPoolExecutor 类的封装。为何 ThreadPoolExecutor 类有如此强大的功能?来看一下 ThreadPoolExecutor 最重要的构造方法。
1、构造方法
ThreadPoolExecutor最重要的构造方法如下:
public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler)
方法参数如下:
参数 | 说明 |
corePoolSize | 指定了线程池中的线程数量 |
maximumPoolSize | 指定了线程池中最大的线程数量 |
keepAliveTime | 当线程池线程数量超过corePoolSize时,多余的空闲线程的存活时间。 即,超过corePoolSize的空闲线程,在多长时间内会被销毁 |
unit | keepAliveTime 的单位,如:TimeUnit.SECONDS |
workQueue | 任务队列,被提交但尚未被执行的任务。 |
threadFactory | 线程工厂,用于创建线程,一般用默认的即可。 |
handler | 拒绝策略。当任务太多来不及处理,如何拒绝任务。 |
ThreadPoolExecutor的使用示例,通过execute()方法提交任务。
public static void main(String[] args) { ThreadPoolExecutor executor = new ThreadPoolExecutor(4, 5, 0, TimeUnit.SECONDS, new LinkedBlockingQueue<>()); for (int i = 0; i < 10; i++) { executor.execute(new Runnable() { @Override public void run() { System.out.println(Thread.currentThread().getName()); } }); } executor.shutdown(); }
或者通过submit()方法提交任务
public static void main(String[] args) throws ExecutionException, InterruptedException { ThreadPoolExecutor executor = new ThreadPoolExecutor(4, 5, 0, TimeUnit.SECONDS, new LinkedBlockingQueue<>()); List<Future> futureList = new Vector<>(); //在其它线程中执行100次下列方法 for (int i = 0; i < 100; i++) { futureList.add(executor.submit(new Callable<String>() { @Override public String call() throws Exception { return Thread.currentThread().getName(); } })); } for (int i = 0;i<futureList.size();i++){ Object o = futureList.get(i).get(); System.out.println(o.toString()); } executor.shutdown(); }
运行结果:
... pool-1-thread-4 pool-1-thread-3 pool-1-thread-2
下面主要讲解ThreadPoolExecutor的构造方法中workQueue和RejectedExecutionHandler参数,其它参数都很简单。
2、workQueue任务队列
用于保存等待执行的任务的阻塞队列。可以选择以下几个阻塞队列。
- ArrayBlockingQueue: 是一个基于数组结构的有界阻塞队列,按FIFO原则进行排序
- LinkedBlockingQueue: 一个基于链表结构的阻塞队列,吞吐量高于ArrayBlockingQueue。静态工厂方法Excutors.newFixedThreadPool()使用了这个队列
- SynchronousQueue: 一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量高于LinkedBlockingQueue,静态工厂方法Excutors.newCachedThreadPool()使用了这个队列
- PriorityBlockingQueue: 一个具有优先级的无限阻塞队列。
3、RejectedExecutionHandler饱和策略
当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略还处理新提交的任务。它可以有如下四个选项:
- AbortPolicy : 直接抛出异常,默认情况下采用这种策略
- CallerRunsPolicy : 只用调用者所在线程来运行任务
- DiscardOldestPolicy : 丢弃队列里最近的一个任务,并执行当前任务
- DiscardPolicy : 不处理,丢弃掉
更多的时候,我们应该通过实现RejectedExecutionHandler 接口来自定义策略,比如记录日志或持久化存储等。
4、submit()与execute()
可以使用execute和submit两个方法向线程池提交任务。
- execute方法用于提交不需要返回值的任务,利用这种方式提交的任务无法得知是否正常执行
- submit方法用于提交一个任务并带有返回值,这个方法将返回一个Future类型对象。可以通过这个返回对象判断任务是否执行成功,并且可以通过future.get()方法来获取返回值,get()方法会阻塞当前线程直到任务完成。
5、shutdown()与shutdownNow()
可以通过调用 shutdown()
或 shutdownNow()
方法来关闭线程池。它们的原理是遍历线程池中的工作线程,然后逐个调用线程的 interrupt
方法来中断线程,所以无法响应中断的任务可能永远无法停止。
这俩方法的区别是,shutdownNow() 首先将线程池的状态设置成STOP,然后尝试停止所有的正在执行或暂停任务的线程,并返回等待执行任务的列表,而 shutdown() 只是将线程池的状态设置成 SHUTDOWN 状态,然后中断所有没有正在执行任务的线程。
只要调用了这两个关闭方法的任意一个,isShutdown 方法就会返回 true。当所有的任务都已关闭了,才表示线程池关闭成功,这时调用 isTerminaced 方法会返回 true。
通常调用 shutdown() 方法来关闭线程池,如果任务不一定要执行完,则可以调用 shutdownNow() 方法。
6、合理配置线程池
要想合理地配置线程池,首先要分析任务特性
- 任务的性质:CPU密集型任务、IO密集型任务和混合型任务。
- 任务的优先级:高、中和低。
- 任务的执行时间:长、中和短。
- 任务的依赖性:是否依赖其他系统资源,如数据库连接。
性质不同的任务可以用不同规模的线程池分开处理。
CPU密集型任务应该配置尽可能少的线程,如配置N+1个线程,N位CPU的个数。
而IO密集型任务线程并不是一直在执行任务,则应配置尽可能多的线程,如2*N。
混合型任务,如果可以拆分,将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐量将高于串行执行的吞吐量。如果这两个任务执行的时间相差很大,则没有必要进行分解。可以通过
Runtime.getRuntime().availableProcessors()
方法获得当前设备的CPU个数。
优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。它可以让优先级高的任务先执行。
7、线程池的监控
由于大量的使用线程池,所以很有必要对其进行监控。可以通过继承线程池来自定义线程池,重写线程池的beforeExecute、afterExecute 和 terminated 方法,也可以在任务执行前,执行后和线程池关闭前执行一些代码来进行监控。在监控线程池的时候可以使用一下属性:
(1) taskCount:线程池需要执行的任务数量
(2) completedTaskCount:线程池在运行过程中已完成的任务数量,小于或等于taskCount
(3) largestPoolSize: 线程池里曾经创建过最大的线程数量。通过这个数据可以知道线程池是否曾经满过。如该数值等于线程池最大大小,则表示线程池曾经满过。
(4) getPoolSize:线程池的线程数量。如果线程池不销毁的话,线程池里的线程不会自动销毁,所以这个大小只增不减。
(5) getActiveCount:获取活动的线程数