如果有人再问你 Java IO,把这篇文章砸他头上(二)

简介: 说到 I/O,想必大家都不会陌生, I/O 英语全称:Input/Output,即输入/输出,通常指数据在内部存储器和外部存储器或其他周边设备之间的输入和输出。

六、基于网络操作的接口

继续来说说数据写到何处的另一种处理方式:将数据写入互联网中以供其他电脑能访问

6.1、Socket 简介

在现实中,Socket 这个概念没有一个具体的实体,它是描述计算机之间完成相互通信一种抽象定义。

打个比方,可以把 Socket 比作为两个城市之间的交通工具,有了它,就可以在城市之间来回穿梭了。并且,交通工具有多种,每种交通工具也有相应的交通规则。Socket 也一样,也有多种。大部分情况下我们使用的都是基于 TCP/IP 的流套接字,它是一种稳定的通信协议。

典型的基于 Socket 通信的应用程序场景,如下图:19.jpg

主机 A 的应用程序要想和主机 B 的应用程序通信,必须通过 Socket 建立连接,而建立 Socket 连接必须需要底层 TCP/IP 协议来建立 TCP 连接。

6.2、建立通信链路

我们知道网络层使用的 IP 协议可以帮助我们根据 IP 地址来找到目标主机,但是一台主机上可能运行着多个应用程序,如何才能与指定的应用程序通信就要通过 TCP 或 UPD 的地址也就是端口号来指定。这样就可以通过一个 Socket 实例代表唯一一个主机上的一个应用程序的通信链路了。

为了准确无误地把数据送达目标处,TCP 协议采用了三次握手策略,如下图:

20.jpg

其中,SYN 全称为 Synchronize Sequence Numbers,表示同步序列编号,是 TCP/IP 建立连接时使用的握手信号。

ACK 全称为 Acknowledge character,即确认字符,表示发来的数据已确认接收无误

在客户机和服务器之间建立正常的 TCP 网络连接时,客户机首先发出一个 SYN 消息,服务器使用 SYN + ACK 应答表示接收到了这个消息,最后客户机再以 ACK 消息响应。

这样在客户机和服务器之间才能建立起可靠的 TCP 连接,数据才可以在客户机和服务器之间传递。

简单流程如下:

  • 发送端 –(发送带有 SYN 标志的数据包 )–> 接受端(第一次握手);
  • 接受端 –(发送带有 SYN + ACK 标志的数据包)–> 发送端(第二次握手);
  • 发送端 –(发送带有 ACK 标志的数据包) –> 接受端(第三次握手);

完成三次握手之后,客户端应用程序与服务器应用程序就可以开始传送数据了。

传输数据是我们建立连接的主要目的,如何通过 Socket 传输数据呢?

6.3、传输数据

当客户端要与服务端通信时,客户端首先要创建一个 Socket 实例,默认操作系统将为这个 Socket 实例分配一个没有被使用的本地端口号,并创建一个包含本地、远程地址和端口号的套接字数据结构,这个数据结构将一直保存在系统中直到这个连接关闭。21.jpg

与之对应的服务端,也将创建一个 ServerSocket 实例,ServerSocket 创建比较简单,只要指定的端口号没有被占用,一般实例创建都会成功,同时操作系统也会为 ServerSocket 实例创建一个底层数据结构,这个数据结构中包含指定监听的端口号和包含监听地址的通配符,通常情况下都是*即监听所有地址。

之后当调用 accept() 方法时,将进入阻塞状态,等待客户端的请求。22.jpg

我们先启动服务端程序,再运行客户端,服务端收到客户端发送的信息,服务端打印结果如下:23.jpg

注意,客户端只有与服务端建立三次握手成功之后,才会发送数据,而 TCP/IP 握手过程,底层操作系统已经帮我们实现了!

当连接已经建立成功,服务端和客户端都会拥有一个 Socket 实例,每个 Socket 实例都有一个 InputStreamOutputStream,正如我们前面所说的,网络 I/O 都是以字节流传输的,Socket 正是通过这两个对象来交换数据。

当 Socket 对象创建时,操作系统将会为 InputStream 和 OutputStream 分别分配一定大小的缓冲区,数据的写入和读取都是通过这个缓存区完成的。

写入端将数据写到 OutputStream 对应的 SendQ 队列中,当队列填满时,数据将被发送到另一端 InputStream 的 RecvQ 队列中,如果这时 RecvQ 已经满了,那么 OutputStream 的 write 方法将会阻塞直到 RecvQ 队列有足够的空间容纳 SendQ 发送的数据。

值得特别注意的是,缓存区的大小以及写入端的速度和读取端的速度非常影响这个连接的数据传输效率,由于可能会发生阻塞,所以网络 I/O 与磁盘 I/O 在数据的写入和读取还要有一个协调的过程,如果两边同时传送数据时可能会产生死锁的问题。

如何提高网络 IO 传输效率、保证数据传输的可靠,已经成了工程师们急需解决的问题。

6.4、IO 工作方式

在计算机中,IO 传输数据有三种工作方式,分别是 BIO、NIO、AIO

在讲解 BIO、NIO、AIO 之前,我们先来回顾一下这几个概念:同步与异步,阻塞与非阻塞

同步与异步的区别

  • 同步就是发起一个请求后,接受者未处理完请求之前,不返回结果。
  • 异步就是发起一个请求后,立刻得到接受者的回应表示已接收到请求,但是接受者并没有处理完,接受者通常依靠事件回调等机制来通知请求者其处理结果。

阻塞和非阻塞的区别

  • 阻塞就是请求者发起一个请求,一直等待其请求结果返回,也就是当前线程会被挂起,无法从事其他任务,只有当条件就绪才能继续。
  • 非阻塞就是请求者发起一个请求,不用一直等着结果返回,可以先去干其他事情,当条件就绪的时候,就自动回来。

而我们要讲的 BIO、NIO、AIO 就是同步与异步、阻塞与非阻塞的组合。

  • BIO:同步阻塞 IO;
  • NIO:同步非阻塞 IO;
  • AIO:异步非阻塞 IO;
6.4.1、BIO

BIO 俗称同步阻塞 IO,一种非常传统的 IO 模型,比如我们上面所举的那个程序例子,就是一个典型的**同步阻塞 IO **的工作方式。

24.jpg

采用 BIO 通信模型的服务端,通常由一个独立的 Acceptor 线程负责监听客户端的连接。

我们一般在服务端通过while(true)循环中会调用accept()方法等待监听客户端的连接,一旦接收到一个连接请求,就可以建立通信套接字进行读写操作,此时不能再接收其他客户端连接请求,只能等待同当前连接的客户端的操作执行完成, 不过可以通过多线程来支持多个客户端的连接。

客户端多线程操作,程序如下:25.jpg

服务端多线程操作,程序如下:

26.jpg

服务端运行结果,如下:

27.jpg

如果要让 BIO 通信模型能够同时处理多个客户端请求,就必须使用多线程,也就是说它在接收到客户端连接请求之后为每个客户端创建一个新的线程进行链路处理,处理完成之后,通过输出流返回应答给客户端,线程销毁。

这就是典型的一请求一应答通信模型 。

如果出现 100、1000、甚至 10000 个用户同时访问服务器,这个时候,如果使用这种模型,那么服务端也会创建与之相同的线程数量,线程数急剧膨胀可能会导致线程堆栈溢出、创建新线程失败等问题,最终导致进程宕机或者僵死,不能对外提供服务

当然,我们可以通过使用 Java 中 ThreadPoolExecutor 线程池机制来改善,让线程的创建和回收成本相对较低,保证了系统有限的资源的控制,实现了 N (客户端请求数量)大于 M (处理客户端请求的线程数量)的伪异步 I/O 模型。

6.4.2、伪异步 BIO

为了解决同步阻塞 I/O 面临的一个链路需要一个线程处理的问题,后来有人对它的线程模型进行了优化,后端通过一个线程池来处理多个客户端的请求接入,形成客户端个数 M:线程池最大线程数 N 的比例关系,其中 M 可以远远大于 N,通过线程池可以灵活地调配线程资源,设置线程的最大值,防止由于海量并发接入导致资源耗尽。

伪异步 IO 模型图,如下图:28.jpg

采用线程池和任务队列可以实现一种叫做伪异步的 I/O 通信框架,当有新的客户端接入时,将客户端的 Socket 封装成一个 Task 投递到后端的线程池中进行处理。

Java 的线程池维护一个消息队列和 N 个活跃线程,对消息队列中的任务进行处理。

客户端,程序如下:29.jpg

相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
云原生实践公开课
课程大纲 开篇:如何学习并实践云原生技术 基础篇: 5 步上手 Kubernetes 进阶篇:生产环境下的 K8s 实践 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
3天前
|
Oracle NoSQL 关系型数据库
实时计算 Flink版操作报错之报错:java.lang.ClassNotFoundException: io.debezium.connector.common.RelationalBaseSourceConnector,如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
11天前
|
Java Unix Windows
|
1天前
|
存储 Java
Java IO流:深入解析与技术应用
Java IO流:深入解析与技术应用
|
2天前
|
存储 Java 编译器
Java文件IO操作基础
Java文件IO操作基础
5 0
|
3天前
|
存储 Java API
【JAVA学习之路 | 进阶篇】IO流及流的分类
【JAVA学习之路 | 进阶篇】IO流及流的分类
|
11天前
|
监控 Java
Java一分钟之-NIO:非阻塞IO操作
【5月更文挑战第14天】Java的NIO(New IO)解决了传统BIO在高并发下的低效问题,通过非阻塞方式提高性能。NIO涉及复杂的选择器和缓冲区管理,易出现线程、内存和中断处理的误区。要避免这些问题,可以使用如Netty的NIO库,谨慎设计并发策略,并建立标准异常处理。示例展示了简单NIO服务器,接收连接并发送欢迎消息。理解NIO工作原理和最佳实践,有助于构建高效网络应用。
16 2
|
11天前
|
Java 开发者
Java一分钟之-Java IO流:文件读写基础
【5月更文挑战第10天】本文介绍了Java IO流在文件读写中的应用,包括`FileInputStream`和`FileOutputStream`用于字节流操作,`BufferedReader`和`PrintWriter`用于字符流。通过代码示例展示了如何读取和写入文件,强调了常见问题如未关闭流、文件路径、编码、权限和异常处理,并提供了追加写入与读取的示例。理解这些基础知识和注意事项能帮助开发者编写更可靠的程序。
25 0
|
11天前
|
存储 缓存 Java
Java IO 流详解
Java IO 流详解
19 1
|
11天前
|
存储 Java
Java的`java.io`包包含多种输入输出类
【5月更文挑战第2天】Java的`java.io`包包含多种输入输出类。此示例展示如何使用`FileInputStream`从`input.txt`读取数据。首先创建`FileInputStream`对象,接着分配一个`byte`数组存储流中的数据。通过`read()`方法读取数据,然后将字节数组转换为字符串打印。最后关闭输入流释放资源。`InputStream`是抽象类,此处使用其子类`FileInputStream`。其他子类如`ByteArrayInputStream`、`ObjectInputStream`和`BufferedInputStream`各有特定用途。
65 1
|
11天前
|
存储 Java
java IO接口(Input)用法
【5月更文挑战第1天】Java的`java.io`包包含多种输入输出类。此示例展示了如何使用`FileInputStream`从`input.txt`读取数据。首先创建`FileInputStream`对象,接着创建一个字节数组存储读取的数据,调用`read()`方法将文件内容填充至数组。然后将字节数组转换为字符串并打印,最后关闭输入流。注意,`InputStream`是抽象类,此处使用其子类`FileInputStream`。其他子类如`ByteArrayInputStream`、`ObjectInputStream`和`BufferedInputStream`各有特定用途。
22 2