在 Map 家族中,WeakHashMap 是一个很特殊的成员,从名字上看与 HashMap 相关,但是与 HashMap 有着很大的差别,翻译成中文后表示弱 HashMap,俗称缓存 HashMap。
01、摘要
在集合系列的第一章,咱们了解到,Map 的实现类有 HashMap、LinkedHashMap、TreeMap、IdentityHashMap、WeakHashMap、Hashtable、Properties 等等。
本文主要从数据结构和算法层面,探讨 WeakHashMap 的实现。
02、简介
刚刚咱们也介绍了,在 Map 家族中,WeakHashMap 是一个很特殊的成员,它的特殊之处在于 WeakHashMap 里的元素可能会被 GC 自动删除,即使程序员没有显示调用 remove() 或者 clear() 方法。
换言之,当向 WeakHashMap 中添加元素的时候,再次遍历获取元素,可能发现它已经不见了,我们来看看下面这个例子。
public static void main(String[] args) { Map weakHashMap = new WeakHashMap(); //向weakHashMap中添加4个元素 for (int i = 0; i < 3; i++) { weakHashMap.put("key-"+i, "value-"+ i); } //输出添加的元素 System.out.println("数组长度:"+weakHashMap.size() + ",输出结果:" + weakHashMap); //主动触发一次GC System.gc(); //再输出添加的元素 System.out.println("数组长度:"+weakHashMap.size() + ",输出结果:" + weakHashMap); }
输出结果:
数组长度:3,输出结果:{key-2=value-2, key-1=value-1, key-0=value-0} 数组长度:3,输出结果:{}
当主动调用 GC 回收器的时候,再次查询 WeakHashMap 里面的数据的时候,内容为空。
更直观的说,当使用 WeakHashMap 时,即使没有显式的添加或删除任何元素,也可能发生如下情况:
- 调用两次 size() 方法返回不同的值;
- 两次调用 isEmpty() 方法,第一次返回 false,第二次返回 true;
- 两次调用 containsKey() 方法,第一次返回 true,第二次返回 false,尽管两次使用的是同一个 key;
- 两次调用 get() 方法,第一次返回一个 value,第二次返回 null,尽管两次使用的是同一个对象。
要明白 WeekHashMap 的工作原理,还需要引入一个概念:弱引用。
我们都知道 Java 中内存是通过 GC 自动管理的,GC 会在程序运行过程中自动判断哪些对象是可以被回收的,并在合适的时机进行内存释放。
GC 判断某个对象是否可被回收的依据是,是否有有效的引用指向该对象。如果没有有效引用指向该对象(基本意味着不存在访问该对象的方式),那么该对象就是可回收的。
2.1、对象引用介绍
从 JDK1.2 版本开始,把对象的引用分为四种级别,从而使程序更加灵活的控制对象的生命周期。这四种级别由高到低依次为:强引用、软引用、弱引用和虚引用。
用表格整理之后,各个引用类型的区别如下:
2.1.1、强引用
强引用是使用最普遍的引用,例如,我们创建一个对象:
//强引用类型 Object object=new Object();
如果一个对象具有强引用,那垃圾回收器绝不会回收它。当内存空间不足, Java 虚拟机宁愿抛出 OutOfMemoryError 错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足的问题。
如果不使用时,要手动通过如下方式来弱化引用,如下:
//将对象设置为null,帮助垃圾收集器回收此对象 object=null;
这个时候,GC 认为该对象不存在引用,就可以回收这个对象,具体什么时候收集这要取决于 GC 的算法。
2.1.2、软引用
被SoftReference
指向的对象,属于软引用,如下:
String str=new String("abc"); //软引用 SoftReference<String> softRef=new SoftReference<String>(str);
如果一个对象只具有软引用,则内存空间足够,垃圾回收器就不会回收它;如果内存空间不足了,就会进入垃圾回收器,Java 虚拟机就会把这个软引用加入到与之关联的引用队列
中,GC 进行回收处理。只要垃圾回收器没有回收它,该对象就可以被程序使用。
当内存不足时,等价于:
If(JVM.内存不足()) { str = null; // 转换为软引用 System.gc(); // 垃圾回收器进行回收 }
软引用的这种特性,比较适合内存敏感的场景,做高速缓存。在某些场景下,比如,系统内存不是很足的情况下,可以使用软引用,GC 会自动回收,再次获取对象的时候,可以对缓存对象进行重建,而又不影响使用。比如:
//创建一个缓存内容cache String cache = new String("abc"); //进行软引用处理 SoftReference<String> softRef=new SoftReference<String>(cache); //判断是否被垃圾回收器回收 if(softRef.get()!=null){ //还没有被回收器回收,直接获取 cache = (String) softRef.get(); }else{ //由于内存吃紧,所以对软引用的对象回收了 //重建缓存对象 cache = new String("abc"); SoftReference<String> softRef = new SoftReference<String>(cache); }
2.1.3、弱引用
被WeakReference
指向的对象,属于弱引用,如下:
String str=new String("abc"); //弱引用 WeakReference<String> abcWeakRef = new WeakReference<String>(str);
弱引用与软引用的区别在于:具有弱引用的对象拥有更短暂的生命周期。
在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程,因此不一定会很快发现那些只具有弱引用的对象。
当垃圾回收器进行扫描回收时,等价于:
str = null; System.gc();
如果这个对象是偶尔的使用,并且希望在使用时随时就能获取到,但又不想影响此对象的垃圾收集,那么你应该用 WeakReference 来记住此对象。
同样的,弱引用对象进入垃圾回收器,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列
中,GC 进行回收处理。
2.1.4、虚引用
被PhantomReference
指向的对象,属于虚引用。
虚引用与软引用和弱引用的一个区别在于:虚引用必须和引用队列联合使用,如下:
String str=new String("abc"); //创建引用队列 ReferenceQueue<String> queue = new ReferenceQueue<String>(); //创建虚引用 PhantomReference<String> phantomReference = new PhantomReference<String>(str, queue);
虚引用,顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收器回收。
当垃圾回收器准备回收一个对象时,如果发现它是虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之关联的引用队列中,GC 进行回收处理。
2.1.5、总结
Java 4 中引用的级别由高到低依次为:强引用 > 软引用 > 弱引用 > 虚引用。
用一张图来看一下他们之间在垃圾回收时的区别:
再次回到本文要讲的 WeakHashMap!
WeakHashMap 内部是通过弱引用来管理 entry 的,弱引用的特性对应到 WeakHashMap 上意味着什么呢?将一对 key, value 放入到 WeakHashMap 里,随时都有可能被 GC 回收。
下面,咱们一起来看看 WeakHashMap 的具体实现。
03、常用方法介绍
3.1、put 方法
put 方法是将指定的 key, value 对添加到 map 里,存储结构类似于 HashMap;不同的是,WeakHashMap 中存储的 Entry 继承自 WeakReference,实现了弱引用。
打开源码如下:
public V put(K key, V value) { Object k = maskNull(key); int h = hash(k); Entry<K,V>[] tab = getTable(); int i = indexFor(h, tab.length); for (Entry<K,V> e = tab[i]; e != null; e = e.next) { if (h == e.hash && eq(k, e.get())) { V oldValue = e.value; if (value != oldValue) e.value = value; return oldValue; } } modCount++; Entry<K,V> e = tab[i]; tab[i] = new Entry<>(k, value, queue, h, e); if (++size >= threshold) resize(tab.length * 2); returnnull; }
WeakHashMap 中存储的 Entry,源码如下:
privatestaticclass Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> { V value; finalint hash; Entry<K,V> next; Entry(Object key, V value, ReferenceQueue<Object> queue, int hash, Entry<K,V> next) { //将key进行弱引用处理 super(key, queue); this.value = value; this.hash = hash; this.next = next; } ...... }
需要注意的是,Entry 中super(key, queue)
,传入的是key
,因此key
才是进行弱引用的,value
是直接强引用关联在this.value
中,System.gc()
时,对key
进行了回收,而value
依然保持。
那value
是何时被清除的呢?
阅读源码,可以看到,调用getTable()
函数,对调用expungeStaleEntries()
函数,该方法对 jvm 要回收的的 entry(quene 中) 进行遍历,并将 entry 的 value 设置为空,进行内存回收。
private Entry<K,V>[] getTable() { expungeStaleEntries(); return table; }
expungeStaleEntries()
函数,源码如下:
private void expungeStaleEntries() { for (Object x; (x = queue.poll()) != null; ) { synchronized (queue) { Entry<K,V> e = (Entry<K,V>) x; int i = indexFor(e.hash, table.length); Entry<K,V> prev = table[i]; Entry<K,V> p = prev; while (p != null) { Entry<K,V> next = p.next; if (p == e) { if (prev == e) table[i] = next; else prev.next = next; //将value设置为null,方便GC回收 e.value = null; // Help GC size--; break; } prev = p; p = next; } } } }
所以效果是 key 在 GC 的时候被清除,value 在 key 清除后,访问数组内容的时候进行清除!
3.2、get 方法
get 方法根据指定的 key 值返回对应的 value。
源码如下:
public V get(Object key) { Object k = maskNull(key); int h = hash(k); //访问数组内容 Entry<K,V>[] tab = getTable(); int index = indexFor(h, tab.length); Entry<K,V> e = tab[index]; while (e != null) { //通过key,进行hash值和equals判断 if (e.hash == h && eq(k, e.get())) return e.value; e = e.next; } returnnull; }
同样的,get 方法在判断对象之前,也调用了getTable()
函数,同时,也调用了expungeStaleEntries()
函数,所以,可能通过 key 获取元素的时候,得到空值;如果 key 没有被 GC 回收,那么就返回对应的 value。
3.3、remove 方法
remove 的作用是通过 key 删除对应的元素。
源码如下:
public V remove(Object key) { Object k = maskNull(key); int h = hash(k); //访问数组内容 Entry<K,V>[] tab = getTable(); int i = indexFor(h, tab.length); Entry<K,V> prev = tab[i]; Entry<K,V> e = prev; //循环链表,通过key,进行hash值和equals判断 while (e != null) { Entry<K,V> next = e.next; if (h == e.hash && eq(k, e.get())) { modCount++; size--; //找到之后,将链表后节点向前移动 if (prev == e) tab[i] = next; else prev.next = next; return e.value; } prev = e; e = next; } returnnull; }
同样的,remove 方法在判断对象之前,也调用了getTable()
函数,同时,也调用了expungeStaleEntries()
函数,所以,可能通过 key 获取元素的时候,可能被垃圾回收器回收,得到空值。
04、总结
WeakHashMap 跟普通的 HashMap 不同,在存储数据时,key
被设置为弱引用类型
,而弱引用类型
在 java 中,可能随时被 jvm 的 gc 回收,所以再次通过获取对象时,可能得到空值,而value
是在访问数组内容的时候,进行清除。
可能很多人觉得这样做很奇葩,其实不然,WeekHashMap 的这个特点特别适用于需要缓存的场景。
在缓存场景下,由于系统内存是有限的,不能缓存所有对象,可以使用 WeekHashMap 进行缓存对象,即使缓存丢失,也可以通过重新计算得到,不会造成系统错误。
参考资料
[1]
知乎 - CarpenterLee - 浅谈WeakHashMap : https://zhuanlan.zhihu.com/p/24887482?refer=dreawer
[2]
csdn - Vander丶 - Java四种引用: https://blog.csdn.net/l540675759/article/details/73733763
[3]
csdn - java-er - Java四种引用: https://blog.csdn.net/mazhimazh/article/details/19752475