redis 面试总结

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 前段时间找工作搜索 golang 面试题时,发现都是比较零散或是基础的题目,覆盖面较小。而自己也在边面试时边总结了一些知识点,为了方便后续回顾,特此整理了一下。

1. redis 为什么快?

在底层上, redis 使用了 IO 多路复用技术,像 select、epoll 等。能较好的保障吞吐量。而且 redis 采用了单线程处理请求,避免了线程切换和锁竞争锁带来的额外消耗。

加上 redis 本身也对一些数据结构进行了优化设计,所以 redis 的性能非常好,官方给出的测试报告是单机可以支持约 10w/s 的 QPS。

2. Redis 有哪些使用场景?应用是怎么样的?

Redis 的使用场景有很多,最常用的莫过于数据缓存了。但由于它提供了多种数据类型,因此我们还可以进行其他场景的开发,比如:

  • 排行榜:有序集合(sorted set)每次写入都会进行排序,而且不含重复值,所以我们可以将用户的唯一标识,比如 userId 作为 key,分数作为 score,然后就可以进行 ZADD 操作,以得到排行榜。
  • 签到:签到往往只有 2 种状态,已签到和未签到。这就跟 0 和 1 一样,所以 redis 的 setbitgetbit 这种对位的操作就适合签到场景。
  • 计数:redis 是单线程操作,这种计数功能,比如点赞数、粉丝数的操作可以交给 redis 以避免并发竞争问题。当然,也得考虑持久化问题。

3. Redis 通信协议 是怎么样的?

redis 采用文本序列化协议,和 http 协议一样,一个请求一个响应,客户端接到响应后再继续请求。也可以发起多次请求,然后一次响应回所有执行结果,即所谓的 pipeline 管道技术

redis 的文本序列化协议比较简单,通过一些规范格式去解析文本,大概如下:

  • \r\n 表示解析结束
  • 简单字符串,以“+”开头
  • 错误 Errors,以“-”开头
  • 整数类型,以“:”开头
  • 大字符串类型,以“$”开头
  • 数组类型,以“*”开头

例如,客户端向服务器发送命令:

SET key value

将被解析为:

*3\r\n$3\r\nSET\r\n$3\r\nkey\r\n$5\r\nvalue\r\n

上面的命令可以看成:

*<参数数量> CR LF

$<参数 1 的字节数量> CR LF
<参数 1 的数据> CR LF
...
$<参数 N 的字节数量> CR LF
<参数 N 的数据> CR LF

而服务器的回复则有很多类型,一般由响应数据的第一个字节决定:

状态回复(status reply)的第一个字节是 "+"

错误回复(error reply)的第一个字节是 "-"

整数回复(integer reply)的第一个字节是 ":"

批量回复(bulk reply)的第一个字节是 "$"

多条批量回复(multi bulk reply)的第一个字节是 "*"

例如,响应回来的状态回复如下:

+OK

4. redis 对外提供了哪些数据类型,它们的底层数据结构又是怎么样的?

为了让开发者能更好的使用缓存,redis 支持了 5 种数据类型。底层是由 6 种数据结构组成的。

5 种数据类型

字符串:字符串类型是 redis 里最基础的数据类型,像 set name "hello" 操作后,在 get name 时返回的就是字符串,而且还支持了对位的操作。一般一个键能存储 512MB 的值。

hash:哈希类型主要是用来存储对象的,一般我们如果有一整个对象要存储,里面包含了多个字段,则可以使用 hash 来存储,因为 redis 提供了对这些字段的提取和设置,减少了开发者对它的二次处理,比如序列化反序列化操作。

list:一个简单的字符串列表,它允许我们从两端进行 push,pop 操作,还支持一定范围的列表元素。可以看成是双向列表。

set:集合是一个不重复值的组合,为我们提供了交集、并集、差集等操作,像找出共同好友这种需求就可以使用集合操作了。

sorted set:有序集合,在上面集合的基础上提供了排序功能,通过一个 score 属性来进行排序。

6 种底层数据结构

上面的数据类型实际上在 redis 底层是有对应的数据结构来实现的,都是 redis 经过精心设计的,能很好的提高处理效率。

简单动态字符串:redis 是使用 C 语言写的,而 C 语言里的字符串类型比较原始,比如使用 \0 作为字符结束符。所以 redis 实现了属于自己的字符串类型,比如字符串长度,预先分配内存,动态拓展等特点,也保证了处理安全性。

链表:一个双端链表,有 prev,next 指针去获取前后节点,带有 len 属性,能保存多种类型的值。

字典:通过哈希算法来实现 key-value 的映射操作,采用链地址法解决了 hash 冲突,一般时间复杂度能达到 O(1)。

跳跃表:一个多层有序链表,每一层都是对下面一层的有序提取,能降低搜索次数,有点像有序二叉树的搜索一样。

跳跃表

整数集合:一个有序的整数集合,不会有重复元素。

压缩列表(ziplist):经过特殊编码的一块连续内存,能有效的节省内存。

快速列表:将 ziplist 组织为了一个双向链表,由于 ziplist 的内部连续性,能降低链表的内存碎片问题,提高内存利用率。

5. redis 淘汰策略有哪些?

redis 的淘汰策略主要是 LRU 淘汰、TTL 淘汰和随机淘汰这三种机制。

  • LRU 淘汰:最近最少使用的淘汰掉
  • TTL 淘汰:越早过期的越先淘汰掉。
  • 随机淘汰:采用随机算法淘汰掉。

由于 redis 可以对键设置过期时间,也可以不设置,所以淘汰策略还得再细分:

  • volatile-lru:针对设置了过期时间的 key 执行 LRU 淘汰策略,没有设置过期时间的不会被淘汰。
  • volatile-ttl:只针对设置了过期时间的 key 执行 TTL 淘汰。
  • volatile-random:只针对设置了过期时间的 key 执行随机淘汰。
  • allkeys-lru:针对所有键进行 LRU 淘汰策略
  • allkeys-random:针对所有键进行随机淘汰策略
  • no-enviction:不执行淘汰策略,如果有写入操作,则报错;读请求可以继续进行。

在 Redis 的配置文件 redis.conf 里我们可以进行淘汰策略的设置:

# 数据达到多大后执行淘汰策略
maxmemory 300mb

# 淘汰策略的设置
maxmemory-policy volatile-lru

6. redis 的持久化机制有哪些?

RDB

在指定的时间间隔里将 Redis 内存里的数据镜像下来,保存到文件里。它会先 fork 一个子进程,将数据的写入交给子进程,而父进程不会涉及到磁盘的 IO 操作,所以 RDB 的性能非常好。如果是在 Unix 系统上,还能充分利用写时复制机制,节省对物理内存的使用。

由于 RDB 文件只存储了某个时刻的内存数据,并没有什么逻辑命令,所以在进行重启恢复时,能很快的加载进来。

虽然 RDB 的 fork 能使得 Redis 的持久化独立进行,但是一旦数据量比较大的,就会一直占用 CPU,可能会影响到父进程的进行。

AOF

将服务器对数据的写操作追加到文件里,相当于将所有的逻辑操作都记录了下来。AOF允许我们以每秒的速度进行持久化,这样的话可以很大程度的减少数据的丢失。同时它采用追加的方式进行写文件,这样即使持久化失败,影响较少,而且能够使用 redis-check-aof 进行修复。

不过日志可能会越来越大,需要靠重写来减少对磁盘的占用。

RDB + AOF

将 RDB 和 AOF 结合起来,组合它们各自的优点。4.0 版本以上才支持。其文件时前半部分时 RDB 格式,后半部分是 AOF 格式。

7. redis 的分布式锁: RedLock 原理是什么?有哪些缺点?

RedLock 原理

客户端依次向各个 redis 节点获取锁,一旦超过一半的机器上锁了,并且没有超过规定的时间,则客户端认为是上锁成功了。同时开始计算锁的过期时间,过期则通知所有服务器解锁,如果这次获取锁失败,也通知所有服务器解锁。 并且解锁时会根据当时带过来的一个 token 一致才解锁,防止误解锁。

RedLock 缺点

  • 受限于 redis 的持久化机制,当某个 redis 节点重启时丢失了锁记录,则有可能导致新的请求又获取到了超过一半的响应,则此时将有两个操作者同时拥有锁资源。官方针对此建议: 延迟重启,等待超时
  • 上面的流程涉及到了时间的判断,如果不同机器的时间差相差太远,则会出现超时解锁,提前释放资源的问题。

8. redis 的高可用方案设计?

主从模式

在不同的机器上部署着同一 Redis 程序。在这多台机器里,我们会选择一个节点作为主节点,它负责数据的写入。其他节点作为从节点,定时的和主节点同步数据。一旦主节点不能使用了,那么就可以在从节点中挑选一个作为主节点,重新上岗服务。
主从模式

哨兵模式

上面的主从模式需要人工的进行故障节点切换,这种方式对于追求完美的程序员来说,肯定是不够的。所以有了自动切换的哨兵模式。

哨兵模式主要实现了下面几个功能:

  • 监控:不断的检测主从节点是否能正常工作。
  • 自动转移故障:当某个 master 不能正常工作时,Sentinel 会启动一个故障转移过程,将其中的一个副本提升为 master,并通知其他从节点对应新的 master 相关信息。
  • 通知:当某个节点出问题时,会告知所有节点。如果是新的主节点被选举出来,还会告知已连接过来的客户端程序关于主节点新的地址。

哨兵模式

集群

Redis 的集群采用了哈希槽的概念,总共会有 16384 个哈希槽。这些哈希槽会被分配到各个节点上,比如:

  • 节点 1 分配了 0 至 5500 的哈希槽。
  • 节点 2 分配了 5501 至 11000 的哈希槽。
  • 节点 3 分配了 11001 至 16384 的哈希槽。

当有 key 过来时,Redis 会对其进行 CRC16(key) % 16384 的运算,看当前的 key 要分散到哪个哈希槽上,再根据当前的哈希槽定位到对应的节点上。这样就完成了一次 key-value 的存储了。

读取也是按这规则来,不同的是,如果运算结果所对应的节点不在当前节点上,则会转发给对应的节点去处理。

当有节点进行新增或删除时,会重新划分这些哈希槽,当然,影响的只会是周围节点,不会造成整个集群不可用。

在这些节点背后还有属于它们的从节点,一旦主节点不可用,那么这些从节点就会被启用,以保证系统的正常运行。

集群

9. 缓存雪崩和穿透该怎么处理?

当缓存失效,就会有大量的请求打到后端服务,压垮系统,这就是缓存雪崩。

除了缓存雪崩,还有缓存穿透的可能。比如每次访问不一样的数据,则请求还是会落到后方。

为了防止缓存雪崩,我们可以对请求做控制,比如加入到消息队列,慢慢消化它;又或者直接开启限流功能,将流量控制在合理的范围内。

而针对缓存穿透,我们可以建立黑白名单,将一些恶意请求拎出来,然后直接拒绝掉。如果是正常的请求,那可以将筛选出来的结果也暂时缓存起来,即使得到的值是 NULL 值。

10. 使用 Redis 在数据并发处理上有哪些需要考虑?

由于 Redis 是以组件形式存在,所以实际上我们的程序通信可以认为是分布式的了,也就是会有缓存和后端数据一致性的问题。

常见的做法是在有新数据到来时,将缓存 key 删除掉,等待下次的查询重新填补上缓存。

之所以在更新数据时不让 Redis 也做更新动作,是为了防止多个更新动作一起发生,可能由于网络原因,导致后更新的比前面更新的先一步达到 Redis, 这样就会跟原来的流程不一样了。所以只采取了删除动作,不做其他。

不过,就算是删除 key 这种方案也有一定概率跟上面的情况一样,真的要严谨的话,一般会设置定时过期时间,让数据最多在这段时间不一致。

11. redis 如何实现延迟队列?

利用有序集合的 score 属性,将时间戳设置到该属性上,然后定时的对其排序,查看最近要执行的记录,如果时间到了,则取出来消费后删除,即可达到延迟队列的目的。

12. redis 的事务和 db 的事务有什么不一样?

Redis 的事务保证了 ACID 中的一致性(C)和隔离性(I),但并不保证原子性(A)和持久性(D)。

对于原子性而言,要么都成功,要么都不成功,而 redis 的事务中途某个语句出错了, 比如 key 类型 出错了, 还会继续执行其他语句;

对于持久性而言,redis 即使开启了最严格的数据落地,由于保存是由后台线程进行的,主线程不会阻塞直到保存成功,所以从命令执行成功到数据保存到硬盘之间,还是有一段非常小的间隔,所以这种模式下的事务也是不持久的。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
27天前
|
存储 NoSQL 算法
阿里面试:亿级 redis 排行榜,如何设计?
本文由40岁老架构师尼恩撰写,针对近期读者在一线互联网企业面试中遇到的高频面试题进行系统化梳理,如使用ZSET排序统计、亿级用户排行榜设计等。文章详细介绍了Redis的四大统计(基数统计、二值统计、排序统计、聚合统计)原理和应用场景,重点讲解了Redis有序集合(Sorted Set)的使用方法和命令,以及如何设计社交点赞系统和游戏玩家排行榜。此外,还探讨了超高并发下Redis热key分治原理、亿级用户排行榜的范围分片设计、Redis Cluster集群持久化方式等内容。文章最后提供了大量面试真题和解决方案,帮助读者提升技术实力,顺利通过面试。
|
27天前
|
存储 NoSQL 算法
面试官:Redis 大 key 多 key,你要怎么拆分?
本文介绍了在Redis中处理大key和多key的几种策略,包括将大value拆分成多个key-value对、对包含大量元素的数据结构进行分桶处理、通过Hash结构减少key数量,以及如何合理拆分大Bitmap或布隆过滤器以提高效率和减少内存占用。这些方法有助于优化Redis性能,特别是在数据量庞大的场景下。
面试官:Redis 大 key 多 key,你要怎么拆分?
|
2月前
|
NoSQL Java API
美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴在面试一线互联网企业时遇到了关于Redis分布式锁过期及自动续期的问题。尼恩对此进行了系统化的梳理,介绍了两种核心解决方案:一是通过增加版本号实现乐观锁,二是利用watch dog自动续期机制。后者通过后台线程定期检查锁的状态并在必要时延长锁的过期时间,确保锁不会因超时而意外释放。尼恩还分享了详细的代码实现和原理分析,帮助读者深入理解并掌握这些技术点,以便在面试中自信应对相关问题。更多技术细节和面试准备资料可在尼恩的技术文章和《尼恩Java面试宝典》中获取。
美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?
|
2月前
|
NoSQL 算法 Redis
Redis面试篇
Redis面试篇
52 5
|
1月前
|
存储 NoSQL Redis
Redis常见面试题:ZSet底层数据结构,SDS、压缩列表ZipList、跳表SkipList
String类型底层数据结构,List类型全面解析,ZSet底层数据结构;简单动态字符串SDS、压缩列表ZipList、哈希表、跳表SkipList、整数数组IntSet
|
2月前
|
缓存 NoSQL 算法
面试题:Redis如何实现分布式锁!
面试题:Redis如何实现分布式锁!
|
4月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
28天前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
|
1月前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?