PostgreSQL · 实现分析 · PostgreSQL 10.0 并行查询和外部表的结合

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
RDS AI 助手,专业版
简介: 前言大家都知道,PostgreSQL 近几大版本中加入了很多 OLAP 相关特性。9.6 的并行扫描应该算最大的相关特性。在今年发布的 10.0 中,并行扫描也在不断加强,新增了并行的索引扫描。我们知道并行扫描是支持外部数据源的。在云上,有很多存储存储产品可以以外部数据源的形式做数据库的外部存储。例如,阿里云的 OSS 和 AWS 的 S3 都是绝佳的外部数据源。云上的 PostgreSQ

前言

大家都知道,PostgreSQL 近几大版本中加入了很多 OLAP 相关特性。9.6 的并行扫描应该算最大的相关特性。在今年发布的 10.0 中,并行扫描也在不断加强,新增了并行的索引扫描。

我们知道并行扫描是支持外部数据源的。在云上,有很多存储存储产品可以以外部数据源的形式做数据库的外部存储。例如,阿里云的 OSS 和 AWS 的 S3 都是绝佳的外部数据源。云上的 PostgreSQL 和他们的结合可以给用户提供既廉价又高性能数存储的方案。

另人欣喜的是,PostgreSQL 的外部表对外提供了可编程接口,并且支持并行扫描框架。利用它可以使 PostgreSQL 的外部数据源访问效率得到质的提升。

技术铺垫

并行查询

并行查询是 PostgreSQL 引入的一个大特性,它可以优化 SQL 语句的执行方式,从传统的单一进程,最多使用单个 CPU 运算的模式,提升到多进程,协同完成工作的模式。

并行查询消耗更多的硬件资源,大大提高了任务的执行效率。
在 PostgreSQL 中,一个 SQL 任务是否可以被并行化,可以通过查看 SQL 的执行计划(Plan)的方式看到。

例如:

EXPLAIN SELECT * FROM pgbench_accounts WHERE filler LIKE '%x%';
                                     QUERY PLAN                                      
-------------------------------------------------------------------------------------
 Gather  (cost=1000.00..217018.43 rows=1 width=97)
   Workers Planned: 2
   ->  Parallel Seq Scan on pgbench_accounts  (cost=0.00..216018.33 rows=1 width=97)
         Filter: (filler ~~ '%x%'::text)
(4 rows)

可以看到,上面的 SQL 采用了并行的方式执行,它使用了2个额外的并行工作进程(共3个进程)完成工作。

  1. 并行 worker 主要完成顺序扫描数据的和过滤数据的工作,符合条件的数据被发送给主进程。
  2. 主进程的 Gather 节点接受来自子进程的数据,再发给客户端。

并行查询的参数配置

合理的配置下列参数能让 PostgreSQL 成功开启并行查询特性。

  1. max_worker_processes 整个实例允许的最大并行工作进程,它的值建议和实例所在主机的逻辑 CPU 相关
  2. max_parallel_workers_per_gather 单个 Gather 节点的并行度,让单个 SQL 更快的执行,可以增大该参数的设置。
  3. force_parallel_mode 是否让查询优化器尽可能的选择并行的执行方式。

详细的参数描述在这

外部表

外部表是 PostgreSQL 引入外部数据的入口,任何的外部数据源都可以使用该接口把数据引入到数据库中。用户可以像访问表一样读写外部数据源上的数据。
目前 PostgreSQL 支持的常见外部数据源有 MySQL Oracle PostgreSQL OSS S3 等。
PostgreSQL 在引入并行查询时也支持了外部表的并行查询,并扩展了之前的编程接口。

并行的外部表扫描实现分析

SQL 语句执行一般过程

一条 SQL 语句的执行通常经历下面的过程:

1) 语法分析和语意分析
2) 查询优化
3) 查询执行

外部表的扫描在阶段 2 和 3 都有相应的操作

  1. 查询优化阶段,需要提供对应外部数据源的数据大小(行数和行宽度)等信息,用于优化器计算最优的查询路径
  2. 查询执行阶段,需要实现几个回调函数,用于向执行器(executor)输送以行(slot)为单位的数据,直到外部数据读取完成。

并行查询在传统模式上的变化

并行查询模式的引入,是 PostgreSQL 在传统的 Pipeline 模式上的较大改动。

大致的改进点如下,这部分也是外部表的并行查询模式实现所要注意的

一 查询优化阶段

提供给优化器并行模型的各类代价信息,参与优化器进行整体的代价评估。
当并行模式最终被确认为最优方案后,优化器会给出并行模式的执行计划。

二 查询执行器阶段

执行器得到一个带有并行执行节点的计划,还要进行如下工作

  1. 启动并行工作进程。
  2. 开辟相关共享内存结构,准备交换数据。
  3. 构造并行协作相关内存结构。
  4. 给工作进程下发并行相关的执行任务。
  5. 并行执行,并行工作进程拿到数据做相应的处理后发送给主进程的 Gather 节点,主进程的 Gather 节点拿到数据后返回给上层节点。直到所有数据处理完毕。
  6. 释放资源,处理事物信息。

上诉工作中框架相关的通用工作 PostgreSQL 已经完成,我们需要在并行框架下实现各阶段的部分逻辑。下面将会重点说明这部分细节。

外表的并行查询的实现分析

实现外部表的并行扫描需要注意上述环节中每个环节,下面描述概要设计

一: 查询优化阶段

  1. 实现 IsForeignScanParallelSafe ,返回 true。 标志该数据源可以并行化。

  2. 补充函数 GetForeignPaths 根据外数据的规模和可提供的并行工作进程数等信息提供给优化器可以行并行 Path。
    • 调用 create_foreignscan_path 创建可并行的外部表扫描节点 Path。
    • 调用 add_partial_path 把生成好的 Path 加入优化器 Path 备选队列。
  3. 补充函数 GetForeignPlan 创建可并行的外部表扫描节点 Plan。
    • 函数内部调用 make_foreignscan 根据输入的 Path 生成 Plan, 并向上返回。

二: 查询执行阶段

并行任务关键当然是把一个大的任务拆分成多个尽可能不相关的子任务,让这些子任务被并行的完成。

例如:

  • 1 对外部 MySQL 一张表 t 的读取,可以按照表 t 主键的值域把数据拆分成 N 部分,让并行 worker 分别读取其中一部分。

  • 2 对外部数据源 oss 一个目录 dir1 中多个文件中数据的读取,可以把这批文件均匀的分成 N 份,让并行 worker 分别完成其中的一部分。

如何合理的切分子任务,往往决定了最终的并行效果。合理的切分数据会使并行任务间尽量少的交互,最终任务完成耗时和并行工作进程数线性相关。

执行器的具体工作:

  1. 实现 EstimateDSMForeignScan 计算需求的共享内存大小。这部分内存将用户存放整个并行任务的相关信息。
    这部分流程主进程完成,即 Gather 节点完成。

  2. 实现 InitializeDSMForeignScan 分配共享内存,放入相关信息。
    我们把整个大任务拆分成一个子任务队列,并存入到共享内存中,初始化锁等信息。
    这部分流程也主进程完成,即 Gather 节点完成。

  3. 实现 InitializeWorkerForeignScan 并行 Worker 读取共享内存上的信息,获取子任务,准备正式开始工作。

  4. 数据的读写操作。
    这部分的实现尽量兼容传统模式的数据读取,或小幅调整。

  5. 实现 ShutdownForeignScan 数据扫描完成的后清理工作。

详细的 Foreign Data Wrapper 接口实现说明在这

并行外部表查询的应用

并行查询能大大提高数据的访问效率,他把外部数据源深度整合到 PostgreSQL 中。可以轻松的和本地数据一起做复杂的运算。同时,我们也能利用这套机制,实现高效的外部数据导入工作。

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
4月前
|
SQL 缓存 监控
MySQL缓存机制:查询缓存与缓冲池优化
MySQL缓存机制是提升数据库性能的关键。本文深入解析了MySQL的缓存体系,包括已弃用的查询缓存和核心的InnoDB缓冲池,帮助理解缓存优化原理。通过合理配置,可显著提升数据库性能,甚至达到10倍以上的效果。
|
4月前
|
SQL 存储 关系型数据库
MySQL体系结构详解:一条SQL查询的旅程
本文深入解析MySQL内部架构,从SQL查询的执行流程到性能优化技巧,涵盖连接建立、查询处理、执行阶段及存储引擎工作机制,帮助开发者理解MySQL运行原理并提升数据库性能。
|
6月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
372 0
|
7月前
|
SQL 存储 关系型数据库
PostgreSQL窗口函数避坑指南:如何让复杂分析查询提速300%?
本文基于真实企业级案例,深入剖析PostgreSQL窗口函数的执行原理与性能陷阱,提供8大优化策略。通过定制索引、分区裁剪、内存调优及并行处理等手段,将分钟级查询压缩至秒级响应。结合CTE分阶段计算与物化视图技术,解决海量数据分析中的瓶颈问题。某金融客户实践表明,风险分析查询从47秒降至0.8秒,效率提升5800%。文章附带代码均在PostgreSQL 15中验证,助您高效优化SQL性能。
393 0
|
4月前
|
SQL 关系型数据库 MySQL
MySQL的查询操作语法要点
储存过程(Stored Procedures) 和 函数(Functions) : 储存过程和函数允许用户编写 SQL 脚本执行复杂任务.
261 14
|
4月前
|
SQL 关系型数据库 MySQL
MySQL的查询操作语法要点
以上概述了MySQL 中常见且重要 的几种 SQL 查询及其相关概念 这些知识点对任何希望有效利用 MySQL 进行数据库管理工作者都至关重要
142 15
|
4月前
|
SQL 监控 关系型数据库
SQL优化技巧:让MySQL查询快人一步
本文深入解析了MySQL查询优化的核心技巧,涵盖索引设计、查询重写、分页优化、批量操作、数据类型优化及性能监控等方面,帮助开发者显著提升数据库性能,解决慢查询问题,适用于高并发与大数据场景。
|
4月前
|
SQL 关系型数据库 MySQL
MySQL入门指南:从安装到第一个查询
本文为MySQL数据库入门指南,内容涵盖从安装配置到基础操作与SQL语法的详细教程。文章首先介绍在Windows、macOS和Linux系统中安装MySQL的步骤,并指导进行初始配置和安全设置。随后讲解数据库和表的创建与管理,包括表结构设计、字段定义和约束设置。接着系统介绍SQL语句的基本操作,如插入、查询、更新和删除数据。此外,文章还涉及高级查询技巧,包括多表连接、聚合函数和子查询的应用。通过实战案例,帮助读者掌握复杂查询与数据修改。最后附有常见问题解答和实用技巧,如数据导入导出和常用函数使用。适合初学者快速入门MySQL数据库,助力数据库技能提升。
|
5月前
|
存储 关系型数据库 MySQL
使用命令行cmd查询MySQL表结构信息技巧分享。
掌握了这些命令和技巧,您就能快速并有效地从命令行中查询MySQL表的结构信息,进而支持数据库维护、架构审查和优化等工作。
559 9
|
4月前
|
SQL 监控 关系型数据库
MySQL高级查询技巧:子查询、联接与集合操作
本文深入解析了MySQL高级查询的核心技术,包括子查询、联接和集合操作,通过实际业务场景展示了其语法、性能差异和适用场景,并提供大量可复用的代码示例,助你从SQL新手进阶为数据操作高手。

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 推荐镜像

    更多