【Android 逆向】函数拦截 ( ARM 架构下的插桩拦截 | 完整代码示例 )

简介: 【Android 逆向】函数拦截 ( ARM 架构下的插桩拦截 | 完整代码示例 )

文章目录

一、ARM 架构下的插桩拦截

二、完整代码示例





一、ARM 架构下的插桩拦截


ARM 架构下的跳转指令 : 下面的二进制数都是十六进制数 ; 32 3232 位指令 ;


04 F0 1F E5 00 00 00 00 , B target ;


B 指令是无条件跳转指令 , 04 F0 1F E5 是对应的机器码 ;



在 【Android 逆向】函数拦截 ( 修改内存页属性 | x86 架构插桩拦截 ) 一、修改内存页属性 基础上 , 先修改内存页属性 , 取得修改内存的权限 ;



然后开始进行函数拦截 ;


首先 , 拼装 ARM 架构下的无条件跳转指令 ;


/* B 无条件跳转指令 */
  unsigned char code[] = { 0x04,0xF0,0x1F,0xE5,0x00,0x00,0x00,0x00 };

然后 , 设置跳转指令的绝对地址 ; 注意这里与 x86 的跳转指令不同 , x86 设置的跳转地址是相对地址 , arm 的跳转地址是绝对地址 ;


/* arm 的跳转是绝对地址跳转 , 传入 pStub 函数指针即可 */
  *(unsigned*)(code + 4) = (unsigned)pStub;


最后 , 将 arm 跳转指令二进制机器码拷贝到函数开始位置 ;


/* 将机器码复制到函数开始位置 */
  memcpy(pFunc, code, sizeof(code));





二、完整代码示例


下面是 插桩函数拦截 的代码 , 兼容 x86 与 arm 架构 ;


注意 : 写完之后推荐刷新 CPU 高速缓存 , 调用 cache_flush 系统调用函数 ;


/*
 * unsigned char* pFunc
 * unsigned char* pStub
 * 上述两个参数分别是两个函数指针
 * 
 * 注意 : 写完之后要刷新 CPU 高速缓存 , 调用 cache_flush 系统调用函数
 */
int write_code(unsigned char* pFunc, unsigned char* pStub) {
  /* 获取 pFunc 函数入口 , 先获取该函数所在内存页地址 */
  void* pBase = (void*)(0xFFFFF000 & (int)pFunc);
  /* 修改整个内存页属性 , 修改为 可读 | 可写 | 可执行 , 
  * 避免因为内存访问权限问题导致操作失败
  * mprotect 函数只能对整个页内存的属性进行修改 
  * 每个 内存页 大小都是 4KB 
  */
  int ret = mprotect(pBase, 0x1000, PROT_WRITE | PROT_READ | PROT_EXEC);
  /* 修改内存页属性失败的情况 */
  if (ret == -1) {
  perror("mprotect:");
  return -1;
  }
#if defined(__i386__) // arm 情况处理
  /* E9 是 JMP 无条件跳转指令 , 后面 4 字节是跳转的地址 */
  unsigned char code[] = { 0xE9,0,0,0,0 };
  /* 计算 pStub 函数跳转地址 , 目标函数 pStub 地址 - 当前函数 pFunc 地址 - 5 
  * 跳转指令 跳转的是 偏移量 , 不是绝对地址值
  */
  *(unsigned*)(code + 1) = pStub - pFunc - 5;
  /* 将跳转代码拷贝到 pFunc 地址处 , 这是 pFunc 函数的入口地址 */
  memcpy(pFunc, code, sizeof(code));
#else // arm 情况处理
  /* B 无条件跳转指令 */
  unsigned char code[] = { 0x04,0xF0,0x1F,0xE5,0x00,0x00,0x00,0x00 };
  /* arm 的跳转是绝对地址跳转 , 传入 pStub 函数指针即可 */
  *(unsigned*)(code + 4) = (unsigned)pStub;
  /* 将机器码复制到函数开始位置 */
  memcpy(pFunc, code, sizeof(code));
#endif
  return 0;
}
/* C/C++ 中的 hook 函数方式 */
void hook_func(uint8_t* pApi, uint8_t* pUser, uint8_t* pStub, size_t size)
{
  unsigned char code[64] = { 0 };
  memcpy(code, pApi, size);
  write_code(pApi, pUser);
  write_code(size + pStub, size + pApi);
  memcpy(pStub, code, size);
}


目录
相关文章
|
11月前
|
安全 Android开发 iOS开发
深入探索Android与iOS的差异:从系统架构到用户体验
在当今的智能手机市场中,Android和iOS无疑是最受欢迎的两大操作系统。本文旨在探讨这两个平台之间的主要差异,包括它们的系统架构、开发环境、安全性、以及用户体验等方面。通过对比分析,我们可以更好地理解为何不同的用户群体可能会偏好其中一个平台,以及这些偏好背后的技术原因。
|
11月前
|
Android开发 Swift iOS开发
深入探索iOS与Android操作系统的架构差异及其对应用开发的影响
在当今数字化时代,移动设备已经成为我们日常生活和工作不可或缺的一部分。其中,iOS和Android作为全球最流行的两大移动操作系统,各自拥有独特的系统架构和设计理念。本文将深入探讨iOS与Android的系统架构差异,并分析这些差异如何影响应用开发者的开发策略和用户体验设计。通过对两者的比较,我们可以更好地理解它们各自的优势和局限性,从而为开发者提供有价值的见解,帮助他们在这两个平台上开发出更高效、更符合用户需求的应用。
|
8月前
|
Android开发 开发者 Kotlin
Android实战经验之Kotlin中快速实现MVI架构
MVI架构通过单向数据流和不可变状态,提供了一种清晰、可预测的状态管理方式。在Kotlin中实现MVI架构,不仅提高了代码的可维护性和可测试性,还能更好地应对复杂的UI交互和状态管理。通过本文的介绍,希望开发者能够掌握MVI架构的核心思想,并在实际项目中灵活应用。
355 8
|
10月前
|
网络协议 Linux Android开发
深入探索Android系统架构与性能优化
本文旨在为读者提供一个全面的视角,以理解Android系统的架构及其关键组件。我们将探讨Android的发展历程、核心特性以及如何通过有效的策略来提升应用的性能和用户体验。本文不包含常规的技术细节,而是聚焦于系统架构层面的深入分析,以及针对开发者的实际优化建议。
286 21
|
10月前
|
存储 Linux API
深入探索Android系统架构:从内核到应用层的全面解析
本文旨在为读者提供一份详尽的Android系统架构分析,从底层的Linux内核到顶层的应用程序框架。我们将探讨Android系统的模块化设计、各层之间的交互机制以及它们如何共同协作以支持丰富多样的应用生态。通过本篇文章,开发者和爱好者可以更深入理解Android平台的工作原理,从而优化开发流程和提升应用性能。
|
10月前
|
安全 Android开发 iOS开发
深入探索iOS与Android系统架构差异及其对开发者的影响
本文旨在通过对比分析iOS和Android两大移动操作系统的系统架构,探讨它们在设计理念、技术实现及开发者生态方面的差异。不同于常规摘要仅概述内容要点,本摘要将简要触及核心议题,为读者提供对两大平台架构特点的宏观理解,铺垫
|
11月前
|
IDE 安全 Android开发
深入探索Android与iOS操作系统的架构差异
本文旨在对比分析Android和iOS两大主流移动操作系统在架构设计上的根本差异。通过详细解读两者的系统架构、开发环境、以及安全性等方面,揭示它们各自的特点及优势,为开发者选择合适的平台提供参考。
|
10月前
|
开发工具 Android开发 iOS开发
Android与iOS生态差异深度剖析:技术架构、开发体验与市场影响####
本文旨在深入探讨Android与iOS两大移动操作系统在技术架构、开发环境及市场表现上的核心差异,为开发者和技术爱好者提供全面的视角。通过对比分析,揭示两者如何塑造了当今多样化的移动应用生态,并对未来发展趋势进行了展望。 ####
|
11月前
|
安全 Linux Android开发
深入探索Android与iOS的系统架构:一场技术较量
在当今数字化时代,智能手机操作系统的选择成为了用户和开发者关注的焦点。本文将深入探讨Android与iOS两大主流操作系统的系统架构,分析它们各自的优势与局限性,并对比两者在用户体验、开发生态和安全性方面的差异。通过本文的技术剖析,读者将对这两个平台的核心技术有更深入的理解。
|
11月前
|
安全 Java Linux
深入解析Android系统架构及其对开发者的意义####
【10月更文挑战第21天】 本文旨在为读者揭开Android操作系统架构的神秘面纱,探讨其如何塑造现代移动应用开发格局。通过剖析Linux内核、硬件抽象层、运行时环境及应用程序框架等关键组件,揭示Android平台的强大功能与灵活性。文章强调了理解Android架构对于开发者优化应用性能、提升用户体验的重要性,并展望了未来技术趋势下Android的发展方向。 ####
354 0

热门文章

最新文章