【Java 并发编程】线程池机制 ( 线程池示例 | newCachedThreadPool | newFixedThreadPool | newSingleThreadExecutor )

简介: 【Java 并发编程】线程池机制 ( 线程池示例 | newCachedThreadPool | newFixedThreadPool | newSingleThreadExecutor )

文章目录

前言

一、线程池示例

二、newCachedThreadPool 线程池示例

三、newFixedThreadPool 线程池示例

三、newSingleThreadExecutor 线程池示例

前言

在上一篇博客 【Java 并发编程】线程池机制 ( 测试线程开销 | 启动线程分析 | 用户态 | 内核态 | 用户线程 | 内核线程 | 轻量级进程 ) 中 , 分析了线程的开销 ;


本篇博客中使用线程池改造该示例并进行分析 ;






一、线程池示例


创建 10 1010 万线程 , 需要 10992 1099210992 ms ; 使用线程池启动 10 1010 万线程 , 仅需要 26 2626 ms ;


线程池的效率比线程高几个数量级 ;



线程池示例 :


import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class Main {
    /**
     * 线程中对该值进行累加操作
     */
    private static int count = 0;
    public static void main(String[] args) throws InterruptedException {
        // 记录程序开始执行时间
        long startTime = System.currentTimeMillis();
        // 线程池
        ExecutorService executorService = Executors.newSingleThreadExecutor();
        // 每次线程执行完毕, 计数 -1 , 当计数减到 0 之后, 才能解除阻塞
        CountDownLatch countDownLatch = new CountDownLatch(100000);
        // 创建 10 万个线程, 开启线程后, 向集合中添加一个元素
        for (int i = 0; i < 100000; i ++) {
            executorService.execute(new Runnable() {
                @Override
                public void run() {
                    count ++;
                    // 计数 -1
                    countDownLatch.countDown();
                }
            });
        }
        // 阻塞等待计数 -1, 直到 10000 个线程执行完毕
        //  使用这种方式确定所有线程执行完毕
        countDownLatch.await();
        // 执行完毕后, 停掉线程池, 否则程序不会退出
        executorService.shutdown();
        // 记录程序执行结束时间
        long endTime = System.currentTimeMillis();
        // 打印消耗的时间
        System.out.println("耗时 : " + ( endTime - startTime ) + " ms , 最终 count = " + count);
    }
}


执行结果 : 原来使用线程需要 10992 1099210992 ms 时间 , 使用线程池后 , 仅需要 26 2626 ms , 这效率提升了好几个数量级 ;

image.png



等待线程执行结束 , 直接调用 Thread.join() 方法 , 等待线程池结束 , 借助 CountDownLatch 通过线程计数来确定线程是否执行完毕 ;



调用 ExecutorService executorService = Executors.newSingleThreadExecutor() 创建线程池 , 创建的是 FinalizableDelegatedExecutorService 线程池 ;


public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }






二、newCachedThreadPool 线程池示例


import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class Main {
    public static void main(String[] args) {
        ExecutorService executorService1 = Executors.newCachedThreadPool();
        for (int i = 0; i < 100; i ++) {
            executorService1.execute(new Task(i));
        }
    }
    static class Task implements Runnable {
        /**
         * 记录线程的索引 0 ~ 99
         */
        private int i = 0;
        public Task(int i) {
            this.i = i;
        }
        @Override
        public void run() {
            System.out.println("线程 ID : " + Thread.currentThread().getName() + " , 线程索引 : " + i);
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}


执行结果 : 该线程池中创建了 100 100100 个线程 , 执行 100 100100 个任务 ;


image.png






三、newFixedThreadPool 线程池示例


import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class Main {
    public static void main(String[] args) {
        ExecutorService executorService2 = Executors.newFixedThreadPool(10);
        for (int i = 0; i < 100; i ++) {
            executorService2.execute(new Task(i));
        }
    }
    static class Task implements Runnable {
        /**
         * 记录线程的索引 0 ~ 99
         */
        private int i = 0;
        public Task(int i) {
            this.i = i;
        }
        @Override
        public void run() {
            System.out.println("线程 ID : " + Thread.currentThread().getName() + " , 线程索引 : " + i);
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}


执行结果 : 该线程池中创建了 10 1010 个线程 , 执行 100 100100 个任务 ;


image.png






三、newSingleThreadExecutor 线程池示例


import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class Main {
    public static void main(String[] args) {
        ExecutorService executorService3 = Executors.newSingleThreadExecutor();
        for (int i = 0; i < 100; i ++) {
            executorService3.execute(new Task(i));
        }
    }
    static class Task implements Runnable {
        /**
         * 记录线程的索引 0 ~ 99
         */
        private int i = 0;
        public Task(int i) {
            this.i = i;
        }
        @Override
        public void run() {
            System.out.println("线程 ID : " + Thread.currentThread().getName() + " , 线程索引 : " + i);
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}


执行结果 : 该线程池中创建了 1 11 个线程 , 执行 100 100100 个任务 ;


image.png

目录
相关文章
|
1月前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
93 17
|
2月前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
29天前
|
缓存 安全 算法
Java 多线程 面试题
Java 多线程 相关基础面试题
|
安全 JavaScript 前端开发
java基础示例
这篇文章将为大家详细讲解有关java基础之方法的示例分析
|
2月前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
2月前
|
消息中间件 缓存 安全
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。
|
2月前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
68 3
|
2月前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
201 2
|
2月前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
57 6
|
3月前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####