水印图像数据集、大规模水印数据集、整理分享

简介: 有效整理
❤️ 【专栏:数据集整理】❤️ 之【有效拒绝假数据】
👋 Follow me 👋,一起 Get 更多有趣 AI、冲冲冲 🚀 🚀

基础信息

  • 论文《 Towards Photo-Realistic Visible Watermark Removal with Conditional Generative Adversarial Networks 》中提出基于 U-net + CGAN 模型使用大规模水印数据集进行去水印操作;
  • 论文链接

数据集介绍

LVW数据集由6万张带水印图像组成,包含了80种来自于公司、组织和个人的水印,包括了中文、英文和logo等不同样式,每种水印对应750张图像。为了保证图像数据的一般性和可用性,公开的PASCAL VOC 2012数据集的图像被作为原始的无水印图像,然后将上述80种水印以随机的大小、位置和透明度打在原始图像上,同时记录下水印的位置信息。

1

数据集划分

为了适应现实场景中需要机器自动处理从未见过的水印和图像的需求,需要确保训练集中的水印和图像都不会出现在测试集中,这样可以很好地模拟现实生活中的使用场景。具体地,在80种水印中,64种水印被作为训练水印,剩余的16种水印被作为测试水印。同时,训练集图像从PASCAL VOC 2012数据集的训练和验证图像中挑选,而测试集图像从PASCAL VOC 2012数据集的测试图像中挑选。

数据集样本

1-1

该数据集用于学术,论文引用如下

****** Citation ******

Please cite the following papers if you use this LVW dataset in your research:

[1] Danni Cheng, Xiang Li, Wei-Hong Li, Chan Lu, FakeLi, Hua Zhao and Wei-Shi Zheng. "Large-Scale Visible Watermark Detection and Removal with Deep Convolutional Networks", Chinese Conference on Pattern Recognition and Computer Vision (PRCV) , 2018.

[2] Xiang Li, Chan Lu, Danni Cheng, Wei-Hong Li, Mei Cao, Bo Liu, Jiechao Ma and Wei-Shi Zheng. "Towards Photo-Realistic Visible Watermark Removal with Conditional Generative Adversarial Networks", International Conference on Image and Graphics (ICIG), 2019.

AI 代码解读

备注(论文中数据集制作说明)

1

数据集获取途径如下

搜索关注本博客同名公号,公号后台,回复 大规模水印获取本博文中的大规模水印数据集下载链接:
大规模水印
AI 代码解读

📙 博主 AI 领域八大干货专栏、诚不我欺

📙 预祝各位 2022 前途似锦、可摘星辰

🎉 作为全网 AI 领域 干货最多的博主之一,❤️ 不负光阴不负卿 ❤️
❤️ 过去的一年、大家都经历了太多太多、祝你披荆斩棘、未来可期

9-9

目录
打赏
0
0
0
0
150
分享
相关文章
【图像分类数据集】非常全面实用的垃圾分类图片数据集共享
【图像分类数据集】非常全面实用的垃圾分类图片数据集共享
1099 28
【图像分类数据集】非常全面实用的垃圾分类图片数据集共享
SPRIGHT:提升文本到图像模型空间一致性的数据集
SPRIGHT 是一个专注于空间关系的大型视觉-语言数据集,通过重新描述600万张图像,显著提升文本到图像模型的空间一致性。
106 18
SPRIGHT:提升文本到图像模型空间一致性的数据集
FreeScale:无需微调即可提升模型的图像生成能力,生成 8K 分辨率的高质量图像
FreeScale是一个无需微调的推理框架,旨在提升扩散模型生成高分辨率图像和视频的能力。该框架通过处理和融合不同尺度的信息,首次实现了8K分辨率图像的生成,显著提高了生成内容的质量和保真度,同时减少了推理时间。
144 20
FreeScale:无需微调即可提升模型的图像生成能力,生成 8K 分辨率的高质量图像
StyleStudio:支持图像风格迁移的文生图模型,能将融合参考图像的风格和文本提示内容生成风格一致的图像
StyleStudio 是一种文本驱动的风格迁移模型,能够将参考图像的风格与文本提示内容融合。通过跨模态 AdaIN 机制、基于风格的分类器自由引导等技术,解决了风格过拟合、控制限制和文本错位等问题,提升了风格迁移的质量和文本对齐的准确性。
195 8
StyleStudio:支持图像风格迁移的文生图模型,能将融合参考图像的风格和文本提示内容生成风格一致的图像
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
X-AnyLabeling是一款集成了多种深度学习算法的图像标注工具,支持图像和视频的多样化标注样式,适用于多种AI训练场景。本文将详细介绍X-AnyLabeling的功能、技术原理以及如何运行该工具。
693 2
X-AnyLabeling:开源的 AI 图像标注工具,支持多种标注样式,适于目标检测、图像分割等不同场景
Kandinsky-3:开源的文本到图像生成框架,适应多种图像生成任务
Kandinsky-3 是一个开源的文本到图像生成框架,基于潜在扩散模型,能够适应多种图像生成任务。该框架支持高质量和逼真的图像合成,包括文本引导的修复/扩展、图像融合、文本-图像融合及视频生成等功能。Kandinsky-3 通过简化模型架构,提高了推理速度,同时保持了图像质量。
138 2
Kandinsky-3:开源的文本到图像生成框架,适应多种图像生成任务
数据集学习笔记(六):目标检测和图像分割标注软件介绍和使用,并转换成YOLO系列可使用的数据集格式
本文介绍了labelImg和labelme两款图像标注工具的安装、使用、数据转换和验证方法,适用于目标检测和图像分割任务,支持YOLO等数据集格式。
1263 2
数据集学习笔记(六):目标检测和图像分割标注软件介绍和使用,并转换成YOLO系列可使用的数据集格式
首次!用合成人脸数据集训练的识别模型,性能高于真实数据集
【10月更文挑战第9天】Vec2Face是一种创新的人脸图像合成方法,旨在解决现有方法在生成具有高区分度身份和广泛属性变化的人脸图像时的局限性。该方法通过使用样本向量作为输入,结合特征掩码自编码器和解码器,能够高效生成大规模人脸数据集,显著提升人脸识别模型的训练效果。Vec2Face在多个真实世界测试集上表现出色,首次在某些测试集上超越了使用真实数据集训练的模型。然而,该方法仍存在一些局限性,如生成的变化可能无法完全覆盖真实世界的多样性,且需要较高的计算资源。
64 2
|
6月前
|
遥感语义分割数据集中的切图策略
该脚本用于遥感图像的切图处理,支持大尺寸图像按指定大小和步长切割为多个小图,适用于语义分割任务的数据预处理。通过设置剪裁尺寸(cs)和步长(ss),可灵活调整输出图像的数量和大小。此外,脚本还支持标签图像的转换,便于后续模型训练使用。
57 0
|
11月前
|
Vript:最为详细的视频文本数据集,每个视频片段平均超过140词标注 | 多模态大模型,文生视频
[Vript](https://github.com/mutonix/Vript) 是一个大规模的细粒度视频文本数据集,包含12K个高分辨率视频和400k+片段,以视频脚本形式进行密集注释,每个场景平均有145个单词的标题。除了视觉信息,还转录了画外音,提供额外背景。新发布的Vript-Bench基准包括三个挑战性任务:Vript-CAP(详细视频描述)、Vript-RR(视频推理)和Vript-ERO(事件时序推理),旨在推动视频理解的发展。
224 1
Vript:最为详细的视频文本数据集,每个视频片段平均超过140词标注 | 多模态大模型,文生视频