记一次性能优化,单台 4 核 8G 机器支撑 5 万 QPS

本文涉及的产品
性能测试 PTS,5000VUM额度
简介: 需求描述如下:用户进入首页,从数据库中查询是否有合适的弹窗配置,如果没有,则继续等待下一次请求、如果有合适的配置,则返回给前端。这里开始则有多个条件分支,如果用户点击了弹窗,则记录用户点击,并且在配置的时间内不再返回配置,如果用户未点击,则24小时后继续返回本次配置,如果用户点击了,但是后续没有配置了,则接着等待下一次。


前言

这篇文章的主题是记录一次性能优化,在优化的过程中遇到的问题,以及如何去解决的。为大家提供一个优化的思路,首先要声明的一点是,我的方式不是唯一的,大家在性能优化之路上遇到的问题都绝对不止一个解决方案。

如何优化

首先大家要明确的一点是,脱离需求谈优化都是耍流氓,所以有谁跟你说在xx机器上实现了百万并发,基本上可以认为是不懂装懂了,单纯的并发数完全是无意义的。其次,我们优化之前必须要有一个目标,需要优化到什么程度,没有明确目标的优化是不可控的。再然后,我们必须明确的找出性能瓶颈在哪里,而不能漫无目的的一通乱搞。

需求描述

这个项目是我在上家公司负责一个单独的模块,本来是集成在主站代码中的,后来因为并发太大,为了防止出现问题后拖累主站服务,所有由我一个人负责拆分出来。对这个模块的拆分要求是,压力测试QPS不能低于3万,数据库负载不能超过50%,服务器负载不能超过70%, 单次请求时长不能超过70ms,错误率不能超过5%。

环境的配置如下: 服务器:4核8G内存,centos7系统,ssd硬盘 数据库:Mysql5.7,最大连接数800 缓存: redis, 1G容量。以上环境都是购买自腾讯云的服务。压测工具:locust,使用腾讯的弹性伸缩实现分布式的压测。

需求描述如下:用户进入首页,从数据库中查询是否有合适的弹窗配置,如果没有,则继续等待下一次请求、如果有合适的配置,则返回给前端。这里开始则有多个条件分支,如果用户点击了弹窗,则记录用户点击,并且在配置的时间内不再返回配置,如果用户未点击,则24小时后继续返回本次配置,如果用户点击了,但是后续没有配置了,则接着等待下一次。

重点分析

根据需求,我们知道了有几个重要的点,1、需要找出合适用户的弹窗配置,2、需要记录用户下一次返回配置的时间并记录到数据库中,3、需要记录用户对返回的配置执行了什么操作并记录到数据库中。

调优

我们可以看到,上述三个重点都存在数据库的操作,不只有读库,还有写库操作。从这里我们可以看到如果不加缓存的话,所有的请求都压到数据库,势必会占满全部连接数,出现拒绝访问的错误,同时因为sql执行过慢,导致请求无法及时返回。所以,我们首先要做的就是讲写库操作剥离开来,提升每一次请求响应速度,优化数据库连接。整个系统的架构图如下:

image.png

将写库操作放到一个先进先出的消息队列中来做,为了减少复杂度,使用了redis的list来做这个消息队列。

然后进行压测,结果如下:

QPS在6000左右502错误大幅上升至30%,服务器cpu在60%-70%之间来回跳动,数据库连接数被占满tcp连接数为6000左右,很明显,问题还是出在数据库,经过排查sql语句,查询到原因就是找出合适用户的配置操作时每次请求都要读取数据库所导致的连接数被用完。因为我们的连接数只有800,一旦请求过多,势必会导致数据库瓶颈。好了,问题找到了,我们继续优化,更新的架构如下

image.png

我们将全部的配置都加载到缓存中,只有在缓存中没有配置的时候才会去读取数据库。

接下来我们再次压测,结果如下:QPS压到2万左右的时候就上不去了,服务器cpu在60%-80%之间跳动,数据库连接数为300个左右,每秒tpc连接数为1.5万左右。

这个问题是困扰我比较久的一个问题,因为我们可以看到,我们2万的QPS,但是tcp连接数却并没有达到2万,我猜测,tcp连接数就是引发瓶颈的问题,但是因为什么原因所引发的暂时无法找出来。

这个时候猜测,既然是无法建立tcp连接,是否有可能是服务器限制了socket连接数,验证猜测,我们看一下,在终端输入ulimit -n命令,显示的结果为65535,看到这里,觉得socket连接数并不是限制我们的原因,为了验证猜测,将socket连接数调大为100001.

再次进行压测,结果如下:

QPS压到2.2万左右的时候就上不去了,服务器cpu在60%-80%之间跳动,数据库连接数为300个左右,每秒tpc连接数为1.7万左右。

虽然有一点提升,但是并没有实质性的变化,接下来的几天时间,我发现都无法找到优化的方案,那几天确实很难受,找不出来优化的方案,过了几天,再次将问题梳理了一遍,发现,虽然socket连接数足够,但是并没有全部被用上,猜测,每次请求过后,tcp连接并没有立即被释放,导致socket无法重用。经过查找资料,找到了问题所在,

tcp链接在经过四次握手结束连接后并不会立即释放,而是处于timewait状态,会等待一段时间,以防止客户端后续的数据未被接收。

好了,问题找到了,我们要接着优化,首先想到的就是调整tcp链接结束后等待时间,但是linux并没有提供这一内核参数的调整,如果要改,必须要自己重新编译内核,幸好还有另一个参数net.ipv4.tcp_max_tw_buckets, timewait 的数量,默认是 180000。我们调整为6000,然后打开timewait快速回收,和开启重用,完整的参数优化如下

#timewait 的数量,默认是 180000。
net.ipv4.tcp_max_tw_buckets = 6000
net.ipv4.ip_local_port_range = 1024 65000
#启用 timewait 快速回收。
net.ipv4.tcp_tw_recycle = 1
#开启重用。允许将 TIME-WAIT sockets 重新用于新的 TCP 连接。
net.ipv4.tcp_tw_reuse = 1

我们再次压测,结果显示:QPS5万,服务器cpu70%,数据库连接正常,tcp连接正常,响应时间平均为60ms,错误率为0%。

结语

到此为止,整个服务的开发、调优、和压测就结束了。回顾这一次调优,得到了很多经验,最重要的是,深刻理解了web开发不是一个独立的个体,而是网络、数据库、编程语言、操作系统等多门学科结合的工程实践,这就要求web开发人员有牢固的基础知识,否则出现了问题还不知道怎么分析查找。

相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
相关文章
|
Cloud Native 编译器 芯片
倚天平台业务访存及网络延时性能调优实践
本文主要内容是业务在倚天平台上的性能调优实践,重点基于芯片的 NUMA 特性和一些其他硬件特性,进行访存和网络延时方面的性能调优方法介绍。
|
4月前
|
运维 监控 Serverless
并发性能提升 4 倍!云帐房用 Serverless 轻松应对瞬时业务洪峰
通过函数计算FC,云帐房实现了性能提升,减少了用户等待时间,同时成本降低了约30%。此外,函数计算FC的多版本管理和灰度发布功能加速了开发迭代,实时监控与告警简化了运维工作。未来,云帐房计划扩展更多FC应用,聚焦业务创新。
7568 9
|
4月前
|
缓存 弹性计算 数据库
阿里云2核4G服务器支持多少人在线?程序效率、并发数、内存CPU性能、公网带宽多因素
2核4G云服务器支持的在线人数取决于多种因素:应用效率、并发数、内存、CPU、带宽、数据库性能、缓存策略、CDN和OSS使用,以及用户行为和系统优化。阿里云的ECS u1实例2核4G配置,适合轻量级应用,实际并发量需结合具体业务测试。
79 0
阿里云2核4G服务器支持多少人在线?程序效率、并发数、内存CPU性能、公网带宽多因素
|
6月前
|
监控 测试技术
【亮剑】理解CPU负载对服务器稳定性的重要性,并提供了诊断和解决CPU负载过高问题的步骤
【4月更文挑战第30天】本文阐述了理解CPU负载对服务器稳定性的重要性,并提供了诊断和解决CPU负载过高问题的步骤:1) 使用监控工具分析CPU使用率和系统负载;2) 深入排查运行队列、进程占用、系统调用和硬件状态;3) 根据排查结果进行代码优化、调整进程优先级或限制CPU使用率,必要时升级硬件。建议建立监控体系,定期性能测试,并持续优化以保证服务器高效运行。
219 1
百万级高并发mongodb集群性能数十倍提升优化实践(上篇)
本文是oppo互联网某百亿级数据量/百万级高并发mongodb集群线上真实优化案例,荣获mongodb中文社区2019年度一等奖。
百万级高并发mongodb集群性能数十倍提升优化实践(上篇)
|
监控 网络协议 应用服务中间件
谈谈游戏服务器单区QPS的计算
谈谈游戏服务器单区QPS的计算
195 0
|
存储 算法 大数据
倚天性能优化--基于倚天优化后的zstd在大数据场景应用:降低存储成本+提升重IO场景性能
倚天性能优化--基于倚天优化后的zstd在大数据场景应用:降低存储成本+提升重IO场景性能
|
弹性计算 监控 云计算
高效性能与稳定监控:ECS性能优化与监控实践
本文深入研究了云服务器ECS的性能优化与监控策略,重点关注了优化实例性能的方法与技巧、调整操作系统参数,以及监控指标的选择、监控工具的应用和建立告警机制。通过实际代码示例,读者能够全面了解如何提升实例性能、实现稳定监控,以确保业务的高效性与可靠性。
416 0
|
缓存 前端开发 JavaScript
设计一个高流量高并发的系统需要关注哪些点
我相信每一位开发同学多多少少都想参与或负责一个高用户、高访问、高并发的系统吧😁。一来可以增加自己实际的项目经验,有应对高并发场景的解决方案,二来是有个高并发的项目经验无疑是自己简历的一个大大的加分项。但是奈何很多人都没有机会可以参与这样的项目,本文从以下几点介绍一下设计一个高流量高并发的系统需要经历哪些步骤以及考虑哪些因素($\color{red}{文章中的不足之处还请大佬们多多指点}$)。
159 0
|
算法 前端开发 应用服务中间件
高并发环境如何有效缓解带宽压力
高并发环境如何有效缓解带宽压力
下一篇
无影云桌面