【计算理论】计算理论总结 ( 下推自动机计算过程 | 上下文无关文法 CFG 转为下推自动机 PDA ) ★★

简介: 【计算理论】计算理论总结 ( 下推自动机计算过程 | 上下文无关文法 CFG 转为下推自动机 PDA ) ★★

文章目录

一、下推自动机计算过程

二、上下文无关文法 CFG 转为下推自动机 PDA 流程



参考博客 :


【计算理论】上下文无关语法 ( 语法组成 | 规则 | 语法 | 语法示例 | 约定的简写形式 | 语法分析树 )

【计算理论】上下文无关语法 ( 代数表达式 | 代数表达式示例 | 确定性有限自动机 DFA 转为 上下文无关语法 )

【计算理论】上下文无关语法 CFG ( CFG 设计示例 | CFG 歧义性 | Chomsky 范式 | 上下文无关语法 转为 Chomsky 范式 )

【计算理论】下推自动机 PDA 及 计算示例

【计算理论】下推自动机 PDA ( 设计下推自动机 | 上下文无关语法 CFG 等价于 下推自动机 PDA )

【计算理论】上下文无关语法 ( CFG ) 转为 下推自动机 ( PDA )

【计算理论】下推自动机 PDA ( 上下文无关语言 CFL 的 泵引理 | 泵引理反证示例 | 自动机扩展 )





一、下推自动机计算过程


1 . 下推自动机 ( PDA ) 提升了自动机计算能力 : 在上述自动机的基础上 , 提升该自动机的计算能力 , 引入一个新的栈结构 ;


栈特点 : ① 后进先出 , ② 存储能力无限 ;



2 . 下推自动机计算有两个部分 , 一个是字符的读取 , 一个是栈内字符的存取 , 栈内只有最上面的字符会被替换 ;



3 . 下推自动机 ( PDA ) 的指令格式 : 该指令包含了 上述讲的两个操作 ;



1 , 0 → ε 1 , 0 \to \varepsilon

1,0→ε



① 自动机字符读取 : 左侧的 1 11 是从带子上读取的字符 ;


② 栈内字符存取操作 : 0 → ε 0 \to \varepsilon0→ε 是需要在栈上进行的操作 , 将栈顶的 0 00 取出 , 然后将 ε \varepsilonε 放入到栈中 , 相当于在栈中 , 使用 ε \varepsilonε 将栈顶的 0 00 替换掉 ;






二、上下文无关文法 CFG 转为下推自动机 PDA 流程


上下文无关文法 CFG 转为下推自动机 PDA 流程 :


① 开始状态 : 开始状态 q s t a r t \rm q_{start}q

start


 , 跳转到 q l o o p \rm q_{loop}q

loop


 状态的指令 ε , ε → K \rm \varepsilon , \varepsilon \to Kε,ε→K , 使用 K \rm KK 替换栈内空字符 ε \varepsilonε , 即将 K \rm KK 放入栈中 ;


② 循环状态 : q l o o p \rm q_{loop}q

loop


 状态的指令都是从本状态指向本状态 , 生成两种指令 , 一种是基本指令 , 一种是终端字符指令 ;


基本指令 S → a T b ∣ b \rm S \to aTb|bS→aTb∣b ,

生成为 " ε , S → a T b \rm \varepsilon , S \to aTbε,S→aTb " 和 " ε , S → b \rm \varepsilon , S \to bε,S→b " 两条指令 , 前面都是读取空字符作为栈读取的信息 ;


终端字符指令 , 如果存在终端字符 a \rm aa 和 b \rm bb , 那么生成 a , a → ε \rm a, a \to \varepsilona,a→ε 和 b , b → ε \rm b, b \to \varepsilonb,b→ε 两条指令 , 含义是读取栈顶 a \rm aa 字符 , 将该字符使用空字符替代 , 即从栈中删除该字符 ;



③ 接受状态 : q l o o p \rm q_{loop}q

loop


 状态跳转到 q a c c e p t \rm q_{accept}q

accept


 指令是 ε , K → ε \rm \varepsilon , K \to \varepsilonε,K→ε , 栈顶读取到 K \rm KK 字符删除 ;


④ 拆分指令 : 在循环状态 q l o o p \rm q_{loop}q

loop


 中的基本指令中存在多字符指令 , 如 ε , S → a T b \rm \varepsilon , S \to aTbε,S→aTb , S \rm SS 读取到空字符 ε \varepsilonε , 使用 a T b \rm aTbaTb 字符替换栈顶的 S \rm SS 字符 , 这是 3 33 个字符 , 肯定不行 , 需要逐个放进去 , 先放 b \rm bb , 再放 T \rm TT , 最后放 a \rm aa ;


最终分解为

ε , S → b \rm \varepsilon , S \to bε,S→b 读取空字符放入 b \rm bb 到栈顶 ,

ε , ε → T \rm \varepsilon , \varepsilon \to Tε,ε→T 读取空字符放入 T \rm TT 到栈顶 ,

ε , ε → a \rm \varepsilon , \varepsilon \to aε,ε→a 读取空字符放入 a \rm aa 到栈顶 ;


目录
相关文章
|
vr&ar
【计算理论】计算理论总结 ( 上下文无关文法 CFG 转为下推自动机 PDA 示例 1 ) ★★
【计算理论】计算理论总结 ( 上下文无关文法 CFG 转为下推自动机 PDA 示例 1 ) ★★
336 0
【计算理论】计算理论总结 ( 上下文无关文法 CFG 转为下推自动机 PDA 示例 1 ) ★★
|
vr&ar
【计算理论】计算理论总结 ( 上下文无关文法 CFG 转为下推自动机 PDA 示例 2 ) ★★
【计算理论】计算理论总结 ( 上下文无关文法 CFG 转为下推自动机 PDA 示例 2 ) ★★
250 0
【计算理论】计算理论总结 ( 上下文无关文法 CFG 转为下推自动机 PDA 示例 2 ) ★★
|
资源调度 Serverless vr&ar
【计算理论】计算理论总结 ( 上下文无关文法 ) ★★
【计算理论】计算理论总结 ( 上下文无关文法 ) ★★
219 0
【计算理论】计算理论总结 ( 上下文无关文法 ) ★★
【计算理论】计算理论总结 ( 非确定性有限自动机 NFA 转为确定性有限自动机 DFA | 示例 ) ★★
【计算理论】计算理论总结 ( 非确定性有限自动机 NFA 转为确定性有限自动机 DFA | 示例 ) ★★
163 0
【计算理论】计算理论总结 ( 非确定性有限自动机 NFA 转为确定性有限自动机 DFA | 示例 ) ★★
【计算理论】计算理论总结 ( 非确定性有限自动机 NFA 转为确定性有限自动机 DFA ) ★★
【计算理论】计算理论总结 ( 非确定性有限自动机 NFA 转为确定性有限自动机 DFA ) ★★
451 0
【计算理论】计算理论总结 ( 非确定性有限自动机 NFA 转为确定性有限自动机 DFA ) ★★
|
机器学习/深度学习 资源调度 算法
【计算理论】计算理论总结 ( 图灵机设计 ) ★★
【计算理论】计算理论总结 ( 图灵机设计 ) ★★
391 0
【计算理论】计算理论总结 ( 图灵机设计 ) ★★
【计算理论】计算理论总结 ( 正则表达式转为非确定性有限自动机 NFA | 示例 ) ★★(一)
【计算理论】计算理论总结 ( 正则表达式转为非确定性有限自动机 NFA | 示例 ) ★★(一)
174 0
【计算理论】计算理论总结 ( 正则表达式转为非确定性有限自动机 NFA | 示例 ) ★★(一)
【计算理论】计算理论总结 ( 正则表达式转为非确定性有限自动机 NFA | 示例 ) ★★(二)
【计算理论】计算理论总结 ( 正则表达式转为非确定性有限自动机 NFA | 示例 ) ★★(二)
158 0
【计算理论】计算理论总结 ( 正则表达式转为非确定性有限自动机 NFA | 示例 ) ★★(二)
【计算理论】下推自动机 PDA ( 设计下推自动机 | 上下文无关语法 CFG 等价于 下推自动机 PDA )(一)
【计算理论】下推自动机 PDA ( 设计下推自动机 | 上下文无关语法 CFG 等价于 下推自动机 PDA )(一)
353 0
【计算理论】下推自动机 PDA ( 设计下推自动机 | 上下文无关语法 CFG 等价于 下推自动机 PDA )(一)
|
vr&ar
【计算理论】下推自动机 PDA ( 设计下推自动机 | 上下文无关语法 CFG 等价于 下推自动机 PDA )(二)
【计算理论】下推自动机 PDA ( 设计下推自动机 | 上下文无关语法 CFG 等价于 下推自动机 PDA )(二)
412 0
【计算理论】下推自动机 PDA ( 设计下推自动机 | 上下文无关语法 CFG 等价于 下推自动机 PDA )(二)