面试官: 为什么在系统中不推荐双写?

简介: 如图所示,两个DataSouce的数据就不一致了,一个为1,一个为5。除非接下来有一个新的请求,对x数据发生了变更,才能修正这种现象!否则,你可能永远都发现不了

正文

背景介绍

话说阿雄在加入某a国际电商公司的时候,业务系统十分简单,一个database就能搞定一切!

可是某a国际电商公司在产品韩的领导下,业务增长迅速,阿雄发现了数据库越来越慢,于是乎阿雄加入了一些缓存,如redis来缓存一些数据,提高系统的响应能力。

又过了一段时间,产品韩发现搜索的速度灰常慢,让阿雄去改。阿雄在网上发现,现在业内都用一些elasticsearch做一些全文检索的操作,于是乎阿雄将一些需要全文检索的数据放入elasticsearch,提高了系统的搜索能力!

随着数据的膨胀,阿雄慢慢的发现了,对数据库做一些数据分析操作,性能明显的跟不上了。于是乎阿雄将数据库里的数据,导入hadoop,然后进行数据分析。

(省略一万字….)

最后,阿雄和产品韩幸福的在一起了

OK,好,现在分析上面的场景!思考第一个问题1、在database,redis,elasticsearch,hadoop中的数据是有关系的,还是彼此独立的?显然是有关系的,在这几个数据源中的数据都是相关的。只是格式不一样而已!例如,对于一条Product数据,在数据库里是

image.png

在redis里就是key为 product:pId:1,value是

{       "pId": "1",
    "productName": "macbook"
}

如上所示,只是数据格式不一样而已!

那好,现在思考第二个问题2、既然这些数据源之间数据是相关的,如何保证这几个数据源之间数据一致性!一种比较简单且容易想到的方案是,hardcode在程序中 例如现在有两个数据源DataSouce1和DataSource2,我们往里头写数据,代码如下

ProductService{
    \\省略
    public void syncData(){
        x1. writeDataSource1();
        x2. writeDataSource2();
    }
}

这就是我们标题中所提到的双写!那么,双写会带来什么坏处呢?OK,继续往下看!

双写缺点

一致性问题打个比方我们现在有两个client,同时往两个DataSouce写数据。

  • 一个client往里头入X为1
  • 一个client往里头入X为5

那么会有如下情形出现

image.png

如图所示,两个DataSouce的数据就不一致了,一个为1,一个为5。除非接下来有一个新的请求,对x数据发生了变更,才能修正这种现象!否则,你可能永远都发现不了。

原子性问题因为我们需要同时往DataSource1和DataSource2一起写数据,你需要保证

x1. writeDataSource1();
x2. writeDataSource2();

这两个操作一起成功,或者一起失败!如果采用双写的方法,是避不开这个问题的!

那么有没有通用的办法来解决这些问题呢?有的,只要能按顺序记录数据的变更即可!那具体怎么做呢,我们继续往下看!

改良方案

假设,如果我们能将数据按顺序记录,写入某个消息队列,然后其他系统按消息顺序恢复数据,看看what happen? 此时架构图如下

image.gif图片

在该架构下,所有的数据变更写入一个消息队列里去。其他各数据源从消息队列里恢复数据即可!

那么,此时还有一致性问题,和原子性问题么?一致性问题OK,这种情况下,各个数据源之间数据肯定是一致的。因为写入顺序已经在消息队列中定义好,各数据源按照消息队列中的消息顺序,恢复数据即可,并不存在竞争现象。因此,不会出现不一致的问题!原子性问题OK,这种情况下,如果写入DataSource失败会怎么样?例如出现了网络问题,这条消息恢复失败了。这个问题其实好解决,一般我们在顺序根据消息恢复数据的时候,会记录下坐标。如果写入失败,停止恢复数据。下次从该坐标处恢复数据即可。

但是在上面那张图中,写入DataBase是异步写入的。这样就不符合很多业务场景的"写后即读"的要求,因此,在实际落地中,做了一些变更!通用做法是去提取数据库的变化!如下图所示

image.png

在该图中的中间件,例如oracle中的oracle golden gate可以提取数据变化。mysql中的canal能提取数据的变化。至于消息队列,可以选用kafka。直接提取数据变化到kafka中,其他数据源从kafka中获取数据,避免了直接双写从而导致一致性和原子性问题。

总结

本问讨论了在项目中常见的数据同步问题,希望大家有所收获。引言

相关文章
|
缓存 NoSQL 关系型数据库
|
9月前
|
消息中间件 存储 缓存
招行面试:如何让系统抗住双十一 预约抢购活动?10Wqps级抢购, 做过吗?
本文由40岁老架构师尼恩撰写,针对一线互联网企业如得物、阿里、滴滴等的面试题进行深度解析。文章聚焦于如何设计系统以应对大促活动中的预约抢购场景,涵盖从预告到支付的完整流程。尼恩通过系统化、体系化的梳理,帮助读者提升技术实力,轻松应对高并发挑战,并提供了详细的架构设计和解决方案。文中还分享了《尼恩Java面试宝典》等资源,助力求职者在面试中脱颖而出,实现“offer直提”。更多内容及PDF资料,请关注公众号【技术自由圈】获取。
|
11月前
|
C语言
经典面试题:嵌入式系统中经常要用到无限循环,怎么样用C编写死循环呢
在嵌入式系统开发中,无限循环常用于持续运行特定任务或监听事件。使用C语言实现死循环很简单,可以通过`while(1)`或`for(;;)`的结构来编写。例如:`while (1) { /* 循环体代码 */ }`,这种写法明确简洁,适用于需要持续执行的任务或等待中断的场景。
|
11月前
|
存储 消息中间件 缓存
系统设计面试参考-设计Spotify系统
【10月更文挑战第4天】支持用户将自己喜欢的音乐、专辑、播放列表等分享到社交媒体平台,如 Facebook、Twitter、Instagram 等。分享内容可以包括音乐链接、封面图片、简介等信息,吸引更多的用户来使用 Spotify 系统。同时,系统可以跟踪分享的效果,如点击量、转化率等,以便评估社交分享对系统推广的贡献。
194 5
|
设计模式 存储 安全
Java面试题:设计一个线程安全的单例类并解释其内存占用情况?使用Java多线程工具类实现一个高效的线程池,并解释其背后的原理。结合观察者模式与Java并发框架,设计一个可扩展的事件处理系统
Java面试题:设计一个线程安全的单例类并解释其内存占用情况?使用Java多线程工具类实现一个高效的线程池,并解释其背后的原理。结合观察者模式与Java并发框架,设计一个可扩展的事件处理系统
137 1
|
Java Linux Android开发
Android面试题之说说系统的启动流程(总结)
这篇文章概述了Android系统的启动流程,从Boot Rom到Zygote进程和SystemServer的启动。init进程作为用户级别的第一个进程,负责创建文件目录、初始化服务并启动Zygote。Zygote通过预加载资源和创建Socket服务,使用fork函数生成SystemServer进程。fork过程中,子进程继承父进程大部分信息但具有独立的进程ID。Zygote预加载资源以减少后续进程的启动时间,而SystemServer启动众多服务并最终开启Launcher应用。文中还讨论了为何从Zygote而非init或SystemServer fork新进程的原因。
167 2
|
缓存 监控 算法
Python性能优化面试:代码级、架构级与系统级优化
【4月更文挑战第19天】本文探讨了Python性能优化面试的重点,包括代码级、架构级和系统级优化。代码级优化涉及时间复杂度、空间复杂度分析,使用内置数据结构和性能分析工具。易错点包括过度优化和滥用全局变量。架构级优化关注异步编程、缓存策略和分布式系统,强调合理利用异步和缓存。系统级优化则涵盖操作系统原理、Python虚拟机优化和服务器调优,需注意监控系统资源和使用编译器加速。面试者应全面理解这些层面,以提高程序性能和面试竞争力。
173 1
Python性能优化面试:代码级、架构级与系统级优化
|
消息中间件 算法 NoSQL
面试题Kafka问题之Kafka保证系统的可用性如何解决
面试题Kafka问题之Kafka保证系统的可用性如何解决
118 0
|
Linux 网络安全
CentOS系统openssh-9,网络安全大厂面试真题解析大全
CentOS系统openssh-9,网络安全大厂面试真题解析大全
|
设计模式 存储 缓存
Java面试题:结合设计模式与并发工具包实现高效缓存;多线程与内存管理优化实践;并发框架与设计模式在复杂系统中的应用
Java面试题:结合设计模式与并发工具包实现高效缓存;多线程与内存管理优化实践;并发框架与设计模式在复杂系统中的应用
145 0