【Android 异步操作】线程池 ( 线程池 reject 拒绝任务 | 线程池 addWorker 添加任务 )

简介: 【Android 异步操作】线程池 ( 线程池 reject 拒绝任务 | 线程池 addWorker 添加任务 )

文章目录

一、线程池 reject 拒绝任务

二、线程池 addWorker 添加任务



在上一篇博客 【Android 异步操作】线程池 ( 线程池 execute 方法源码解析 ) 中 , 讲解 线程池 ThreadPoolExecutor 的 execute 方法时 , 有两个重要的核心方法 ;


两个核心的操作 :


添加任务 : addWorker(command, true) , 第二个参数为 true 是添加核心线程任务 , 第二个参数为 false 是添加非核心线程任务 ;

拒绝任务 : reject(command)

本博客中研究 拒绝任务 reject 方法的细节 ;






一、线程池 reject 拒绝任务


在 ThreadPoolExecutor 线程池中 , void reject(Runnable command) 方法 , 主要是调用了 RejectedExecutionHandler handler 的 rejectedExecution 方法 ;


该 handler 可以在如下 构造函数中传入 , 如下构造函数中的最后一个参数 ;


 

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {


部分相关代码示例 :


public class ThreadPoolExecutor extends AbstractExecutorService {
    /**
     * 当线程池任务饱和 , 或线程池关闭 , 使用该 Handler 处理拒绝任务异常情况 ;
     */
    private volatile RejectedExecutionHandler handler;
    /**
     * 在该构造函数中 , 可以传入 Handler ;
     */
    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }
    /**
     * 拒绝执行给定命令的处理 
     */
    final void reject(Runnable command) {
        handler.rejectedExecution(command, this);
    }
}



自定义 RejectedExecutionHandler 处理拒绝任务的情况 ;


实现 rejectedExecution 方法 , 当 线程池任务队列饱和 , 或者 没有空闲线程 时 , 线程池被关闭 时 , 导致线程池的任务队列无法接受该任务时 , 会调用该方法



/**
 * 处理添加任务失败情况的 handler 
 * 用户可以自定义该接口 
 */
public interface RejectedExecutionHandler {
    /**
     * 
     * 无法接受任务时执行该方法 ;
     * 当线程池任务队列饱和 , 或者没有空闲线程时 , 线程池被关闭时 , 会调用该方法
     *
     * 该方法可能会触发 RejectedExecutionException 异常 , 用户需要捕获并处理该异常
     *
     * @param r 被拒绝的任务
     * @param executor 尝试执行该任务的执行者
     * @throws RejectedExecutionException 如果没有补救方法, 抛出该异常
     */
    void rejectedExecution(Runnable r, ThreadPoolExecutor executor);
}






二、线程池 addWorker 添加任务


检查一个新的工作者 ( Worker ) 是否可以被添加 , 根据当前的 线程池状态 , 和 给定的核心线程数 , 最大线程数 等判定 ;


如果可以添加 , 那么先 调整 工作者 ( Worker ) 的个数 , 然后 创建新的 工作者 ( Worker ) , 并 将参数中的 Runnable firstTask 设置为第一个任务 ;


如果线程池停止或关闭 , 返回 false ;


如果线程创建失败 , 不管是线程工厂返回空 , 还是出现 OOM , 直接退出 ;



如果当前的 线程个数少于 核心线程数 , 或者当前的 任务数已满 , 则必须创建 工作者 ( Worker ) , 并执行第一个初始任务 ,


public class ThreadPoolExecutor extends AbstractExecutorService {
    /**
     * 检查一个新的工作者是否可以被添加 , 根据当前的线程池状态 , 和给定的核心线程数 , 最大线程数等判定 ;
     * 如果可以添加 , 那么先调整 工作者 ( Worker ) 的个数 , 然后创建新的 工作者 ( Worker ) , 
     * 并将参数中的 Runnable firstTask 设置为第一个任务 ; 
     * 如果线程池停止或关闭 , 返回 false ; 
     * 如果线程创建失败 , 不管是线程工厂返回空 , 还是出现 OOM , 直接退出 ; 
     *
     * 第一个运行的任务 ; 
     * 如果当前的线程个数少于 核心线程数 , 或者当前的任务数已满 , 
     * 必须创建 工作者 ( Worker ) , 并执行第一个初始任务 , 
     *
     * @param core 如果设置为 true , 必须使用核心线程绑定 
     * @return true if successful
     */
    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        // 死循环
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);
            // 查看队列是否为空
            // 查看线程池是否 SHUTDOWN 
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;
    // 查看线程池的线程个数 , 与 核心线程数, 最大线程数 进行各种对比
    // 获取现在的线程池情况 
            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
    // 如果没有达到最大线程数 , 允许添加 
                if (compareAndIncrementWorkerCount(c))  // 该行代码只是将计数器 +1
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }
  // 下面是添加一个线程的逻辑  
        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
          // 创建工作者 , 并将任务设置给该工作者 
            w = new Worker(firstTask);
            // 线程是从工作者中取出的 , 该线程是在 Worker 构造函数中使用线程工厂创建的 
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());
                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
      // 将工作者设置给 工作者集合 
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                // 如果添加成功 , 就会启动 Worker 中的线程 
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }
}





目录
相关文章
|
16天前
|
存储 监控 Java
【Java并发】【线程池】带你从0-1入门线程池
欢迎来到我的技术博客!我是一名热爱编程的开发者,梦想是编写高端CRUD应用。2025年我正在沉淀中,博客更新速度加快,期待与你一起成长。 线程池是一种复用线程资源的机制,通过预先创建一定数量的线程并管理其生命周期,避免频繁创建/销毁线程带来的性能开销。它解决了线程创建成本高、资源耗尽风险、响应速度慢和任务执行缺乏管理等问题。
142 60
【Java并发】【线程池】带你从0-1入门线程池
|
2月前
|
监控 Kubernetes Java
阿里面试:5000qps访问一个500ms的接口,如何设计线程池的核心线程数、最大线程数? 需要多少台机器?
本文由40岁老架构师尼恩撰写,针对一线互联网企业的高频面试题“如何确定系统的最佳线程数”进行系统化梳理。文章详细介绍了线程池设计的三个核心步骤:理论预估、压测验证和监控调整,并结合实际案例(5000qps、500ms响应时间、4核8G机器)给出具体参数设置建议。此外,还提供了《尼恩Java面试宝典PDF》等资源,帮助读者提升技术能力,顺利通过大厂面试。关注【技术自由圈】公众号,回复“领电子书”获取更多学习资料。
|
1月前
|
安全 Java C#
Unity多线程使用(线程池)
在C#中使用线程池需引用`System.Threading`。创建单个线程时,务必在Unity程序停止前关闭线程(如使用`Thread.Abort()`),否则可能导致崩溃。示例代码展示了如何创建和管理线程,确保在线程中执行任务并在主线程中处理结果。完整代码包括线程池队列、主线程检查及线程安全的操作队列管理,确保多线程操作的稳定性和安全性。
|
16天前
|
数据采集 Java 数据处理
Python实用技巧:轻松驾驭多线程与多进程,加速任务执行
在Python编程中,多线程和多进程是提升程序效率的关键工具。多线程适用于I/O密集型任务,如文件读写、网络请求;多进程则适合CPU密集型任务,如科学计算、图像处理。本文详细介绍这两种并发编程方式的基本用法及应用场景,并通过实例代码展示如何使用threading、multiprocessing模块及线程池、进程池来优化程序性能。结合实际案例,帮助读者掌握并发编程技巧,提高程序执行速度和资源利用率。
22 0
|
2月前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
126 17
|
1月前
|
Linux
Linux编程: 在业务线程中注册和处理Linux信号
本文详细介绍了如何在Linux中通过在业务线程中注册和处理信号。我们讨论了信号的基本概念,并通过完整的代码示例展示了在业务线程中注册和处理信号的方法。通过正确地使用信号处理机制,可以提高程序的健壮性和响应能力。希望本文能帮助您更好地理解和应用Linux信号处理,提高开发效率和代码质量。
49 17
|
1月前
|
Linux
Linux编程: 在业务线程中注册和处理Linux信号
通过本文,您可以了解如何在业务线程中注册和处理Linux信号。正确处理信号可以提高程序的健壮性和稳定性。希望这些内容能帮助您更好地理解和应用Linux信号处理机制。
60 26
|
3月前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
287 2
|
4月前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
4月前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####

热门文章

最新文章

  • 1
    Android历史版本与APK文件结构
  • 2
    【01】噩梦终结flutter配安卓android鸿蒙harmonyOS 以及next调试环境配鸿蒙和ios真机调试环境-flutter项目安卓环境配置-gradle-agp-ndkVersion模拟器运行真机测试环境-本地环境搭建-如何快速搭建android本地运行环境-优雅草卓伊凡-很多人在这步就被难倒了
  • 3
    【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
  • 4
    【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
  • 5
    【03】微信支付商户申请下户到配置完整流程-微信开放平台创建APP应用-填写上传基础资料-生成安卓证书-获取Apk签名-申请+配置完整流程-优雅草卓伊凡
  • 6
    【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
  • 7
    Cellebrite UFED 4PC 7.71 (Windows) - Android 和 iOS 移动设备取证软件
  • 8
    escrcpy:【技术党必看】Android开发,Escrcpy 让你无线投屏新体验!图形界面掌控 Android,30-120fps 超流畅!🔥
  • 9
    Android实战经验之Kotlin中快速实现MVI架构
  • 10
    即时通讯安全篇(一):正确地理解和使用Android端加密算法