雪花算法的原理和 Java 实现

简介: SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id。在分布式系统中的应用十分广泛,且ID 引入了时间戳,基本上保持自增的,后面的代码中有详细的注解。

SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作为全局唯一 id。在分布式系统中的应用十分广泛,且ID 引入了时间戳,基本上保持自增的,后面的代码中有详细的注解。

这 64 个 bit 中,其中 1 个 bit 是不用的,然后用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 id,12 bit 作为序列号。

image.png

给大家举个例子吧,比如下面那个 64 bit 的 long 型数字:

  • 第一个部分,是 1 个 bit:0,这个是无意义的。
  • 第二个部分是 41 个 bit:表示的是时间戳。
  • 第三个部分是 5 个 bit:表示的是机房 id,10001。
  • 第四个部分是 5 个 bit:表示的是机器 id,1 1001。
  • 第五个部分是 12 个 bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的 id 的序号,0000 00000000。

①1 bit:是不用的,为啥呢?

因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。

②41 bit:表示的是时间戳,单位是毫秒。

41 bit 可以表示的数字多达 2^41 - 1,也就是可以标识 2 ^ 41 - 1 个毫秒值,换算成年就是表示 69 年的时间。

③10 bit:记录工作机器 id,代表的是这个服务最多可以部署在 2^10 台机器上,也就是 1024 台机器。

但是 10 bit 里 5 个 bit 代表机房 id,5 个 bit 代表机器 id。意思就是最多代表 2 ^ 5 个机房(32 个机房),每个机房里可以代表 2 ^ 5 个机器(32 台机器),也可以根据自己公司的实际情况确定。

④12 bit:这个是用来记录同一个毫秒内产生的不同 id。

12 bit 可以代表的最大正整数是 2 ^ 12 - 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 id。

简单来说,你的某个服务假设要生成一个全局唯一 id,那么就可以发送一个请求给部署了 SnowFlake 算法的系统,由这个 SnowFlake 算法系统来生成唯一 id。

这个 SnowFlake 算法系统首先肯定是知道自己所在的机房和机器的,比如机房 id = 17,机器 id = 12。

接着 SnowFlake 算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个 64 bit 的 long 型 id,64 个 bit 中的第一个 bit 是无意义的。

接着 41 个 bit,就可以用当前时间戳(单位到毫秒),然后接着 5 个 bit 设置上这个机房 id,还有 5 个 bit 设置上机器 id。

最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成 id 的请求累加一个序号,作为最后的 12 个 bit。

最终一个 64 个 bit 的 id 就出来了,类似于:

image.png

这个算法可以保证说,一个机房的一台机器上,在同一毫秒内,生成了一个唯一的 id。可能一个毫秒内会生成多个 id,但是有最后 12 个 bit 的序号来区分开来。

下面我们简单看看这个 SnowFlake 算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。

总之就是用一个 64 bit 的数字中各个 bit 位来设置不同的标志位,区分每一个 id。

SnowFlake 算法的实现代码如下:

public class IdWorker {
 //因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。
 //机器ID  2进制5位  32位减掉1位 31个
 private long workerId;
 //机房ID 2进制5位  32位减掉1位 31个
 private long datacenterId;
 //代表一毫秒内生成的多个id的最新序号  12位 4096 -1 = 4095 个
 private long sequence;
 //设置一个时间初始值    2^41 - 1   差不多可以用69年
 private long twepoch = 1585644268888L;
 //5位的机器id
 private long workerIdBits = 5L;
 //5位的机房id
 private long datacenterIdBits = 5L;
 //每毫秒内产生的id数 2 的 12次方
 private long sequenceBits = 12L;
 // 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
 private long maxWorkerId = -1L ^ (-1L << workerIdBits);
 // 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内
 private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
 private long workerIdShift = sequenceBits;
 private long datacenterIdShift = sequenceBits + workerIdBits;
 private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
 private long sequenceMask = -1L ^ (-1L << sequenceBits);
 //记录产生时间毫秒数,判断是否是同1毫秒
 private long lastTimestamp = -1L;
 public long getWorkerId(){
  return workerId;
 }
 public long getDatacenterId() {
  return datacenterId;
 }
 public long getTimestamp() {
  return System.currentTimeMillis();
 }
 public IdWorker(long workerId, long datacenterId, long sequence) {
  // 检查机房id和机器id是否超过31 不能小于0
  if (workerId > maxWorkerId || workerId < 0) {
   throw new IllegalArgumentException(
     String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
  }
  if (datacenterId > maxDatacenterId || datacenterId < 0) {
   throw new IllegalArgumentException(
     String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
  }
  this.workerId = workerId;
  this.datacenterId = datacenterId;
  this.sequence = sequence;
 }
 // 这个是核心方法,通过调用nextId()方法,让当前这台机器上的snowflake算法程序生成一个全局唯一的id
 public synchronized long nextId() {
  // 这儿就是获取当前时间戳,单位是毫秒
  long timestamp = timeGen();
  if (timestamp < lastTimestamp) {
   System.err.printf(
     "clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
   throw new RuntimeException(
     String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
       lastTimestamp - timestamp));
  }
  // 下面是说假设在同一个毫秒内,又发送了一个请求生成一个id
  // 这个时候就得把seqence序号给递增1,最多就是4096
  if (lastTimestamp == timestamp) {
   // 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,
   //这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
   sequence = (sequence + 1) & sequenceMask;
   //当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID
   if (sequence == 0) {
    timestamp = tilNextMillis(lastTimestamp);
   }
  } else {
   sequence = 0;
  }
  // 这儿记录一下最近一次生成id的时间戳,单位是毫秒
  lastTimestamp = timestamp;
  // 这儿就是最核心的二进制位运算操作,生成一个64bit的id
  // 先将当前时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后12 bit
  // 最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型
  return ((timestamp - twepoch) << timestampLeftShift) |
    (datacenterId << datacenterIdShift) |
    (workerId << workerIdShift) | sequence;
 }
 /**
  * 当某一毫秒的时间,产生的id数 超过4095,系统会进入等待,直到下一毫秒,系统继续产生ID
  * @param lastTimestamp
  * @return
  */
 private long tilNextMillis(long lastTimestamp) {
  long timestamp = timeGen();
  while (timestamp <= lastTimestamp) {
   timestamp = timeGen();
  }
  return timestamp;
 }
 //获取当前时间戳
 private long timeGen(){
  return System.currentTimeMillis();
 }
 /**
  *  main 测试类
  * @param args
  */
 public static void main(String[] args) {
  System.out.println(1&4596);
  System.out.println(2&4596);
  System.out.println(6&4596);
  System.out.println(6&4596);
  System.out.println(6&4596);
  System.out.println(6&4596);
//  IdWorker worker = new IdWorker(1,1,1);
//  for (int i = 0; i < 22; i++) {
//   System.out.println(worker.nextId());
//  }
 }
}

SnowFlake算法的优点:

(1)高性能高可用:生成时不依赖于数据库,完全在内存中生成。

(2)容量大:每秒中能生成数百万的自增ID。

(3)ID自增:存入数据库中,索引效率高。

SnowFlake算法的缺点:

依赖与系统时间的一致性,如果系统时间被回调,或者改变,可能会造成id冲突或者重复。

实际中我们的机房并没有那么多,我们可以改进改算法,将10bit的机器id优化,成业务表或者和我们系统相关的业务。

相关文章
|
9天前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
机器学习/深度学习 算法 自动驾驶
262 0
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从零开始构建图注意力网络:GAT算法原理与数值实现详解
本文详细解析了图注意力网络(GAT)的算法原理和实现过程。GAT通过引入注意力机制解决了图卷积网络(GCN)中所有邻居节点贡献相等的局限性,让模型能够自动学习不同邻居的重要性权重。
223 0
从零开始构建图注意力网络:GAT算法原理与数值实现详解
|
2月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
520 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
2月前
|
传感器 算法 定位技术
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
|
2月前
|
算法
离散粒子群算法(DPSO)的原理与MATLAB实现
离散粒子群算法(DPSO)的原理与MATLAB实现
124 0
|
3月前
|
监控 Java API
现代 Java IO 高性能实践从原理到落地的高效实现路径与实战指南
本文深入解析现代Java高性能IO实践,涵盖异步非阻塞IO、操作系统优化、大文件处理、响应式网络编程与数据库访问,结合Netty、Reactor等技术落地高并发应用,助力构建高效可扩展的IO系统。
121 0
|
3月前
|
机器学习/深度学习 人工智能 编解码
AI视觉新突破:多角度理解3D世界的算法原理全解析
多视角条件扩散算法通过多张图片输入生成高质量3D模型,克服了单图建模背面细节缺失的问题。该技术模拟人类多角度观察方式,结合跨视图注意力机制与一致性损失优化,大幅提升几何精度与纹理保真度,成为AI 3D生成的重要突破。
272 0
|
3月前
|
存储 缓存 安全
深入讲解 Java 并发编程核心原理与应用案例
本教程全面讲解Java并发编程,涵盖并发基础、线程安全、同步机制、并发工具类、线程池及实际应用案例,助你掌握多线程开发核心技术,提升程序性能与响应能力。
162 0