后端缓存的23个关键关注点(1)

简介: 后端缓存的23个关键关注点(1)

1:极简缓存架构

通过JSR107规范,我们将框架定义为客户端层、缓存提供层、缓存管理层、缓存存储层。其中缓存存储层又分为基本存储层、LRU存储层和Weak存储层,如下图所示。

                   


微信图片_20220121190824.jpg


缓存分层图


其中:

  • 客户端层:使用者直接通过该层与数据进行交互。
  • 缓存提供层:主要对缓存管理层的生命周期进行维护,负责缓存管理层的创建,保存、获取以及销毁。
  • 缓存管理层:主要对缓存客户端的生命周期进行维护,负责缓存客户端的创建,保存、获取以及销毁
  • 缓存存储层:负责数据以什么样的形式进行存储。
  • 基本存储层:是以普通的ConcurrentHashMap为存储核心,数据不淘汰。
  • LRU存储层:是以最近最少用为原则进行的数据存储和缓存淘汰机制。
  • Weak存储层:是以弱引用为原则的数据存储和缓存淘汰机制。



 2:容量评估

缓存系统主要消耗的是服务器的内存,因此,在使用缓存时必须先对应用需要缓存的数据大小进行评估,包括缓存的数据结构、缓存大小、缓存数量、缓存的失效时间,然后根据业务情况自行推算在未来一定时间内的容量的使用情况,根据容量评估的结果来申请和分配缓存资源,否则会造成资源浪费或者缓存空间不够。


3:业务分离

建议将使用缓存的业务进行分离,核心业务和非核心业务使用不同的缓存实例,从物理上进行隔离,如果有条件,则请对每个业务使用单独的实例或者集群,以减小应用之间互相影响的可能性。笔者就经常听说有的公司应用了共享缓存,造成缓存数据被覆盖以及缓存数据错乱的线上事故。



4:监控为王

所有的缓存实例都需要添加监控,这是非常重要的,我们需要对慢查询、大对象、内存使用情况做可靠的监控。


5:失效时间

任何缓存的key都必须设定缓存失效时间,且失效时间不能集中在某一点,否则会导致缓存占满内存或者缓存雪崩。

 

6:大量key同时失效时间的危害

在使用缓存时需要进行缓存设计,要充分考虑如何避免常见的缓存穿透、缓存雪崩、缓存并发等问题,尤其是对于高并发的缓存使用,需要对key的过期时间进行随机设置,例如,将过期时间设置为10秒+random(2),也就是将过期时间随机设置成10~12秒。


笔者曾经见过一个case:在应用程序中对使用的大量缓存key设置了同一个固定的失效时间,当缓存失效时,会造成在一段时间内同时访问数据库,造成数据库的压力较大。



7:先更新数据库后更新缓存有啥问题?

想象一下,如果两个线程同时执行更新操作,线程1更新数据库后,线程2也更新了数据库,然后开始写缓存,但线程2先执行了更新缓存的操作,而线程1在执行更新缓存的时候就把线程2更新的数据给覆盖掉了,这样就会出现数据不一致。



8:先删缓存, 行不行?

“先删缓存,然后执行数据库事务”也有人讨论这种方案,不过这种操作对于如商品这种查询非常频繁的业务不适用,因为在你删缓存的同时,已经有另一个系统来读缓存了,此时事务还没有提交。当然对于如用户维度的业务是可以考虑的。



9:数据库和缓存数据一致性

京东采用了通过canal更新缓存原子性的方法,如下图所示。


微信图片_20220121190845.jpg


最终一致性方案


几个关注点:

❑      更新数据时使用更新时间戳或者版本对比。

❑      使用如canal订阅数据库binlog;此处把mysql看成发布者,binlog是发布的内容,canal(canal 是阿里巴巴mysql数据库binlog的增量订阅&消费组件)看成消费者,canal订阅binlog然后更新到Redis。


将更新请求按照相应的规则分散到多个队列,然后每个队列的进行单线程更新,更新时拉取最新的数据保存;更新之前获取相关的锁再进行更新。


10.先更新数据库,再删除缓存的一种实践

流程如下图所示:


微信图片_20220121190900.jpg


过程不赘述,只强调一个,数据库update变更会同步发到消息,通过消息去删除缓存。如果删除失败,消息有重试机制保障。另外除了极端情况,缓存更新是比较及时的。



11:本地缓存的挑战

如果对性能的要求不是非常高,则尽量使用分布式缓存,而不要使用本地缓存,因为本地缓存在服务的各个节点之间复制,在某一时刻副本之间是不一致的,如果这个缓存代表的是开关,而且分布式系统中的请求有可能会重复,就会导致重复的请求走到两个节点,一个节点的开关是开,一个节点的开关是关,如果请求处理没有做到幂等,就会造成处理重复,在严重情况下会造成资金损失。



12:缓存热点与多级缓存

对于分布式缓存,我们需要在Nginx+Lua应用中进行应用缓存来减少Redis集群的访问冲击;即首先查询应用本地缓存,如果命中则直接缓存,如果没有命中则接着查询Redis集群、回源到Tomcat;然后将数据缓存到应用本地。如同14-8所示。



相关文章
|
2月前
|
存储 缓存 监控
后端开发中的缓存机制:深度解析与最佳实践####
本文深入探讨了后端开发中不可或缺的一环——缓存机制,旨在为读者提供一份详尽的指南,涵盖缓存的基本原理、常见类型(如内存缓存、磁盘缓存、分布式缓存等)、主流技术选型(Redis、Memcached、Ehcache等),以及在实际项目中如何根据业务需求设计并实施高效的缓存策略。不同于常规摘要的概述性质,本摘要直接点明文章将围绕“深度解析”与“最佳实践”两大核心展开,既适合初学者构建基础认知框架,也为有经验的开发者提供优化建议与实战技巧。 ####
|
3月前
|
存储 缓存 NoSQL
深入理解后端缓存机制的重要性与实践
本文将探讨在后端开发中缓存机制的应用及其重要性。缓存,作为提高系统性能和用户体验的关键技术,对于后端开发来说至关重要。通过减少数据库访问次数和缩短响应时间,缓存可以显著提升应用程序的性能。本文将从缓存的基本概念入手,介绍常见的缓存策略和实现方式,并通过实例展示如何在后端开发中有效应用缓存技术。最后,我们将讨论缓存带来的一些挑战及其解决方案,帮助您在实际项目中更好地利用缓存机制。
|
4月前
|
机器学习/深度学习 缓存 NoSQL
深度学习在图像识别中的应用与挑战后端开发中的数据缓存策略
本文深入探讨了深度学习技术在图像识别领域的应用,包括卷积神经网络(CNN)的原理、常见模型如ResNet和VGG的介绍,以及这些模型在实际应用中的表现。同时,文章也讨论了数据增强、模型集成等改进性能的方法,并指出了当前面临的计算资源需求高、数据隐私等挑战。通过综合分析,本文旨在为深度学习在图像识别中的进一步研究和应用提供参考。 本文探讨了后端开发中数据缓存的重要性和实现方法,通过具体案例解析Redis在实际应用中的使用。首先介绍了缓存的基本概念及其在后端系统性能优化中的作用;接着详细讲解了Redis的常见数据类型和应用场景;最后通过一个实际项目展示了如何在Django框架中集成Redis,
|
5月前
|
缓存 网络协议 API
【API管理 APIM】APIM中对后端API服务的DNS域名缓存问题
【API管理 APIM】APIM中对后端API服务的DNS域名缓存问题
|
5月前
|
存储 缓存 JavaScript
深入理解后端开发中的缓存机制
【8月更文挑战第31天】本文将通过一个实际的后端开发案例,介绍如何有效地使用缓存来提高应用性能。我们将从基础概念开始,逐步深入到缓存策略的实施,最后通过代码示例展示如何在Node.js环境中实现一个简单的缓存系统。无论你是缓存新手还是希望优化现有系统的开发者,这篇文章都将为你提供实用的指导和启示。
|
5月前
|
存储 缓存 关系型数据库
Django后端架构开发:缓存机制,接口缓存、文件缓存、数据库缓存与Memcached缓存
Django后端架构开发:缓存机制,接口缓存、文件缓存、数据库缓存与Memcached缓存
105 0
|
5月前
|
存储 缓存 数据库
Django后端架构开发:信号与缓存架构开发
Django后端架构开发:信号与缓存架构开发
89 0
|
6月前
|
缓存 算法 API
深入理解后端开发中的缓存策略
【7月更文挑战第15天】缓存是提高后端系统性能和扩展性的关键机制之一。本文将深入探讨后端开发中缓存的应用,包括缓存的基本原理、类型、以及在实际应用中的策略。我们将从缓存的定义开始,逐步介绍缓存在数据库查询、API响应和分布式系统中的优化作用。通过实例分析常见的缓存模式,如LRU、LFU和FIFO,并讨论它们在不同场景下的适用性。最后,文章还将涵盖缓存一致性问题和解决方案,帮助读者构建高效且可靠的后端系统。
104 12
|
7月前
|
缓存 NoSQL Java
后端开发中缓存的作用以及基于Spring框架演示实现缓存
后端开发中缓存的作用以及基于Spring框架演示实现缓存
63 1
|
6月前
|
存储 缓存 NoSQL
深入理解分布式缓存在后端系统中的应用与实践
【7月更文挑战第20天】 本文将探讨分布式缓存技术在后端系统设计中的关键角色,并揭示其如何优化性能和扩展性。文章不仅剖析了分布式缓存的基本原理和工作机制,而且提供了实际案例分析,展示了其在处理大规模数据时的优势。我们将深入了解几种流行的分布式缓存解决方案,并讨论它们在不同场景下的适用性。最后,文章将指导读者如何在真实世界的应用中实施分布式缓存,包括架构设计、性能调优以及故障排除的最佳实践。