【Elastic Engineering】Elasticsearch:运用 search_after 来进行深度分页

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Elasticsearch:运用 search_after 来进行深度分页

作者:刘晓国


在上一篇文章 “Elasticsearch:运用 scroll 接口对大量数据实现更好的分页”,我们讲述了如何运用 scroll 接口来对大量数据来进行有效地分页。在那篇文章中,我们讲述了两种方法:


1.from 加上 size 的方法来进行分页

2.运用 scroll 接口来进行分页


对于大量的数据而言,我们尽量避免使用 from+size 这种方法。这里的原因是 index.max_result_window 的默认值是 10K,也就是说 from+size 的最大值是1万。搜索请求占用堆内存和时间与 from+size 成比例,这限制了内存。假如你想 hit 从 990 到 1000,那么每个 shard 至少需要 1000 个文档:

image.png


为了避免过度使得我们的 cluster 繁忙,通常 Scroll 接口被推荐作为深层次的 scrolling,但是因为维护 scroll 上下文也是非常昂贵的,所以这种方法不推荐作为实时用户请求。search_after 参数通过提供实时 cursor 来解决此问题。 我们的想法是使用上一页的结果来帮助检索下一页。


我们先输入如下的文档到 twitter 索引中:

POST _bulk
{ "index" : { "_index" : "twitter", "_id": 1} }
{"user":"双榆树-张三", "DOB":"1980-01-01", "message":"今儿天气不错啊,出去转转去","uid":2,"age":20,"city":"北京","province":"北京","country":"中国","address":"中国北京市海淀区","location":{"lat":"39.970718","lon":"116.325747"}}
{ "index" : { "_index" : "twitter", "_id": 2 }}
{"user":"东城区-老刘", "DOB":"1981-01-01", "message":"出发,下一站云南!","uid":3,"age":30,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区台基厂三条3号","location":{"lat":"39.904313","lon":"116.412754"}}
{ "index" : { "_index" : "twitter", "_id": 3} }
{"user":"东城区-李四", "DOB":"1982-01-01", "message":"happy birthday!","uid":4,"age":30,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区","location":{"lat":"39.893801","lon":"116.408986"}}
{ "index" : { "_index" : "twitter", "_id": 4} }
{"user":"朝阳区-老贾","DOB":"1983-01-01", "message":"123,gogogo","uid":5,"age":35,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区建国门","location":{"lat":"39.718256","lon":"116.367910"}}
{ "index" : { "_index" : "twitter", "_id": 5} }
{"user":"朝阳区-老王","DOB":"1984-01-01", "message":"Happy BirthDay My Friend!","uid":6,"age":50,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区国贸","location":{"lat":"39.918256","lon":"116.467910"}}
{ "index" : { "_index" : "twitter", "_id": 6} }
{"user":"虹桥-老吴", "DOB":"1985-01-01", "message":"好友来了都今天我生日,好友来了,什么 birthday happy 就成!","uid":7,"age":90,"city":"上海","province":"上海","country":"中国","address":"中国上海市闵行区","location":{"lat":"31.175927","lon":"121.383328"}}

这里共有6个文档。假设检索第一页的查询如下所示:

GET twitter/_search
{
  "size": 2,
  "query": {
    "match": {
      "city": "北京"
    }
  },
  "sort": [
    {
      "DOB": {
        "order": "asc"
      }
    },
    {
      "user.keyword": {
        "order": "asc"
      }
    }
  ]
}

显示的结果为:

{
  "took" : 29,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : null,
        "_source" : {
          "user" : "双榆树-张三",
          "DOB" : "1980-01-01",
          "message" : "今儿天气不错啊,出去转转去",
          "uid" : 2,
          "age" : 20,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市海淀区",
          "location" : {
            "lat" : "39.970718",
            "lon" : "116.325747"
          }
        },
        "sort" : [
          315532800000,
          "双榆树-张三"
        ]
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : null,
        "_source" : {
          "user" : "东城区-老刘",
          "DOB" : "1981-01-01",
          "message" : "出发,下一站云南!",
          "uid" : 3,
          "age" : 30,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市东城区台基厂三条3号",
          "location" : {
            "lat" : "39.904313",
            "lon" : "116.412754"
          }
        },
        "sort" : [
          347155200000,
          "东城区-老刘"
        ]
      }
    ]
  }
}

上述请求的结果包括每个文档的 sort 值数组。 这些 sort 值可以与 search_after 参数一起使用,以开始返回在这个结果列表之后的任何文档。 例如,我们可以使用上一个文档的 sort 值并将其传递给 search_after 以检索下一页结果:

GET twitter/_search
{
  "size": 2,
  "query": {
    "match": {
      "city": "北京"
    }
  },
  "search_after": [
    347155200000,
    "东城区-老刘"
  ],
  "sort": [
    {
      "DOB": {
        "order": "asc"
      }
    },
    {
      "user.keyword": {
        "order": "asc"
      }
    }
  ]
}

在这里在 search_after 中,我们把上一个搜索结果的 sort 值放进来。 显示的结果为:

{
  "took" : 47,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "3",
        "_score" : null,
        "_source" : {
          "user" : "东城区-李四",
          "DOB" : "1982-01-01",
          "message" : "happy birthday!",
          "uid" : 4,
          "age" : 30,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市东城区",
          "location" : {
            "lat" : "39.893801",
            "lon" : "116.408986"
          }
        },
        "sort" : [
          378691200000,
          "东城区-李四"
        ]
      },
      {
        "_index" : "twitter",
        "_type" : "_doc",
        "_id" : "4",
        "_score" : null,
        "_source" : {
          "user" : "朝阳区-老贾",
          "DOB" : "1983-01-01",
          "message" : "123,gogogo",
          "uid" : 5,
          "age" : 35,
          "city" : "北京",
          "province" : "北京",
          "country" : "中国",
          "address" : "中国北京市朝阳区建国门",
          "location" : {
            "lat" : "39.718256",
            "lon" : "116.367910"
          }
        },
        "sort" : [
          410227200000,
          "朝阳区-老贾"
        ]
      }
    ]
  }
}

注意:当我们使用 search_after 时,from 值必须设置为 0 或者 -1。


search_after 不是自由跳转到随机页面而是并行 scroll 多个查询的解决方案。 它与 scroll API 非常相似,但与它不同,search_after 参数是无状态的,它始终针对最新版本的搜索器进行解析。 因此,排序顺序可能会在步行期间发生变化,具体取决于索引的更新和删除。


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
缓存 搜索推荐 关系型数据库
Elasticsearch - 闲聊ElasticSearch中的分页
Elasticsearch - 闲聊ElasticSearch中的分页
134 0
|
1月前
|
缓存 关系型数据库 API
京东面试题:ElasticSearch深度分页解决方案!
京东面试题:ElasticSearch深度分页解决方案!
|
6月前
elasticsearch使用 scroll 滚动分页实战实例
elasticsearch使用 scroll 滚动分页实战实例
260 0
|
4月前
|
数据库
面试题ES问题之Elasticsearch的排序分页和高亮功能如何解决
面试题ES问题之Elasticsearch的排序分页和高亮功能如何解决
38 0
|
5月前
|
存储 数据库 开发者
Elasticsearch中的三种分页策略深度解析:原理、使用及对比
Elasticsearch中的三种分页策略深度解析:原理、使用及对比
|
6月前
|
运维 架构师 搜索推荐
7 年+积累、 Elastic 创始人Shay Banon 等 15 位专家推荐的 Elasticsearch 8.X新书已上线...
7 年+积累、 Elastic 创始人Shay Banon 等 15 位专家推荐的 Elasticsearch 8.X新书已上线...
84 4
|
6月前
|
存储 安全 数据处理
Elastic 中国开发者大会2023最新干货——Elasticsearch 7、8 新功能一网打尽
Elastic 中国开发者大会2023最新干货——Elasticsearch 7、8 新功能一网打尽
69 0
|
SQL 索引
ElasticSearch分页
es有多种方式实现分页查询:from+size,scroll,searchAfter,本文讨论各种方式的利弊和适用场景。
646 0
|
11月前
|
搜索推荐 索引
Elasticsearch elastic io 100%,但磁盘的iops和吞吐量没爆没啥原因吗?
Elasticsearch elastic io 100%,但磁盘的iops和吞吐量没爆没啥原因吗?
182 3
|
11月前
|
存储 缓存 监控
Elasticsearch elastic io 100%,但磁盘的iops和吞吐量没爆没啥原因吗?
Elasticsearch elastic io 100%,但磁盘的iops和吞吐量没爆没啥原因吗?
275 2

相关产品

  • 检索分析服务 Elasticsearch版