【Elastic Engineering】Elasticsearch:使用同义词 synonyms 来提高搜索效率

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Elasticsearch:使用同义词 synonyms 来提高搜索效率

作者:刘晓国


在我们的很多情况下,我们希望在搜索时,有时能够使用一个词的同义词来进行搜索,这样我们能搜索出来更多相关的内容。我们可以通过 text analysis 来帮助我们形成同义词。如果大家对 Elastic 的 analyzer 还不是很熟的话,请参阅我之前的文章 “Elasticsearch: analyzer”。文本分析通常应用于你建立索引时的所有文档以及发送给 Elasticsearch image.png的所有查询。在进行同义词搜索时,我们有如下的几种方案:


在建立索引时 (indexing),通过 analyzer 建立 synonyms 的反向索引 (inverted index)

在 query 时,通过 search analyzer 对查询的词建立 synonyms

在 indexing 及 query 时,同时建立反向索引中的 synonym 及在 query 时为查询的词建立 synonyms

那么在实际的使用中,我们到底是用上述的哪种方案呢?在下面的例子中,你将看到在 query 时使用 synonym 会更加灵活,并且更容易让我们更新同义词的名单已经更好地支持 multi-word synonyms


在今天的文章中,我们将分别论述。


在 query 时对词进行同义词解析


首先,我们来创建一个具有如下 anaylzer 及 mapping 的一个索引:

PUT myindex
{
  "settings": {
    "analysis": {
      "filter": {
        "my_synonyms": {
          "type": "synonym_graph",
          "synonyms": [
            "China, chn, PRC, People's Republic of China"
          ]
        }
      },
      "analyzer": {
        "my_analyzer": {
          "type": "custom",
          "tokenizer": "standard",
          "filter":[
            "lowercase",
            "my_synonyms"
          ]
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "standard", 
        "search_analyzer": "my_analyzer"
      }
    }
  }
}

在上面,我们使用 synonym_graph 过滤器对 quey 时的词进行过滤。在这个过滤器中,我们把如下的一个词都视为同义词:

China, chn, PRC, People's Republic of China

在mapping 中,我们定义了 search_analyzer 为 my_analyzer,也就是说在 query 时,它会对所有的词进行分词。但凡有任何一个词是 China, chn, PRC, People's Republic of China 其中的一个,它都将被视为同义词。


我们首先来创建一个文档:

PUT myindex/_doc/1
{
  "content": "I like People's Republic of China"
}

运行上面的指令,我们将创建一个 content 为 I like People's Republic of China 的文档。


接下来,我们做如下的查询:

GET myindex/_search
{
  "query": {
    "match": {
      "content": "China"
    }
  }
}

那么显示的结果是:

{
  "took" : 256,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 1.4384104,
    "hits" : [
      {
        "_index" : "myindex",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.4384104,
        "_source" : {
          "content" : "I like People's Republic of China"
        }
      }
    ]
  }
}

可能有人说了,这是因为上面的 content 里本身就含有 China, 所以上面的结果证明不了什么。接下来,我们进行如下的搜索:

GET myindex/_search
{
  "query": {
    "match": {
      "content": "prc"
    }
  }
}

结果,我们可以发现,我们同样显示上面的搜索的结果。这个说明了这个同义词的搜索是成功的。


接下来,我们想搜索 silk road 也能搜索出中国来,那么我怎么做呢?


我们来执行如下的命令:

POST myindex/_close
PUT myindex/_settings
{
  "analysis": {
    "filter": {
      "my_synonyms": {
        "type": "synonym_graph",
        "synonyms": [
          "china, silk road, chn, PRC, People's Republic of China"
        ]
      }
    },
    "analyzer": {
      "my_analyzer": {
        "type": "custom",
        "tokenizer": "standard",
        "filter": [
          "lowercase",
          "my_synonyms"
        ]
      }
    }
  }
}
POST myindex/_open

我们可以通过更新  setting 来实现这个。在上面请注意:当我们更新一个索引的 index 时,我们必须先把它关掉,等设置好后,在重新打开。否则会有错误。那么经过上面的修改后,我们重新运行如下的搜索:

GET myindex/_search
{
  "query": {
    "match": {
      "content": "silk road"
    }
  }
}

那么上面的搜索结果将会显示我们之前显示的结果。在这里 silk road 也就是和之前的其它词都是同义词。


有人可能觉得上面在 settings 里配置太多的同义词很麻烦(如果同义词很多的话)。按照 Elastic 的官方文档,我们可以把所有的同义词放到一个文档中。首先,我们在 Elasticsearch 的 config 目录中,创建一个叫做 analysis 的子目录,然后创建一个叫做 synonyms.txt 的文档,而它的内容如下:

$ pwd
/Users/liuxg/elastic/elasticsearch-7.8.0/config/analysis
liuxg:analysis liuxg$ cat synonyms.txt 
"china, silk road, chn, PRC, People's Republic of China",
"elk, elastic stack"

在这里,我们多添加了一个 elk, elastic stack 的同义词。我们来创建一个新的索引:

PUT myindex1
{
  "settings": {
    "analysis": {
      "filter": {
        "my_synonyms": {
          "type": "synonym_graph",
          "synonyms_path": "analysis/synonyms.txt"
        }
      },
      "analyzer": {
        "my_analyzer": {
          "type": "custom",
          "tokenizer": "standard",
          "filter":[
            "lowercase",
            "my_synonyms"
          ]
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "standard", 
        "search_analyzer": "my_analyzer"
      }
    }
  }
}

运行完上的指令后,我们来创建一个文档:

PUT myindex1/_doc/1
{
  "content": "I love elastic stack"
}

然后我们做如下的搜索:

GET myindex1/_search
{
  "query": {
    "match": {
      "content": "elk"
    }
  }
}

上面的搜索结果显示:

{
  "took" : 451,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.5753642,
    "hits" : [
      {
        "_index" : "myindex1",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.5753642,
        "_source" : {
          "content" : "I love elastic stack"
        }
      }
    ]
  }
}

显然,我可以看到搜索 elk,我们就可以搜索到含有 elastic stack 的文档。


在实际的使用中,如果我们更新 synonyms.txt 文件,那么,我们可以使用如下的 API 来进行更新:

POST myindex1/_reload_search_analyzers


在建立索引时建立同义词


针对这种情况,我们可以在建立索引的时候,就把同义词建立好。这样,我们可以在 query 时,不使用同义词解析。在这种情况下,我们可以使用 synonym 过滤器,而不是 synonym_graph 过滤器。


我们接下来使用如下的命令来创建一个新的索引:

PUT myindex2
{
  "settings": {
    "analysis": {
      "filter": {
        "my_synonyms": {
          "type": "synonym",
          "synonyms": [
            "china, silk road, chn, PRC, People's Republic of China",
            "elk, elastic stack"
          ]
        }
      },
      "analyzer": {
        "my_analyzer": {
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "my_synonyms"
          ]
        }
      }
    },
    "number_of_shards": 1
  },
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "my_analyzer"
      }
    }
  }
}

在上面,我们使用了 my_analyzer 作为 myindex2 在索引时使用的分词器。它将使用 synonym 过滤器,并把如下的词视为同义词:

"china, silk road, chn, PRC, People's Republic of China",
"elk, elastic stack"

我们可以使用如下的方法来测试这个 analyzer:

POST myindex2/_analyze
{
  "text": "I like elk a lot",
  "analyzer": "my_analyzer"
}

上面的命令显示的结果是:

{
  "tokens" : [
    {
      "token" : "i",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "<ALPHANUM>",
      "position" : 0
    },
    {
      "token" : "like",
      "start_offset" : 2,
      "end_offset" : 6,
      "type" : "<ALPHANUM>",
      "position" : 1
    },
    {
      "token" : "elk",
      "start_offset" : 7,
      "end_offset" : 10,
      "type" : "<ALPHANUM>",
      "position" : 2
    },
    {
      "token" : "elastic",
      "start_offset" : 7,
      "end_offset" : 10,
      "type" : "SYNONYM",
      "position" : 2
    },
    {
      "token" : "a",
      "start_offset" : 11,
      "end_offset" : 12,
      "type" : "<ALPHANUM>",
      "position" : 3
    },
    {
      "token" : "stack",
      "start_offset" : 11,
      "end_offset" : 12,
      "type" : "SYNONYM",
      "position" : 3
    },
    {
      "token" : "lot",
      "start_offset" : 13,
      "end_offset" : 16,
      "type" : "<ALPHANUM>",
      "position" : 4
    }
  ]
}

你可以看到,尽管在测试的 text 没有 elastic stack,只有 elk,但是显示的结果了含有 elastic 及 stack 这两个 token。


我们接下来使用如下的命令来创建一个文档:

PUT myindex2/_doc/1
{
  "content": "I like elk a lot"
}

我们使用如下的查询:

GET myindex2/_validate/query?rewrite=true
{
  "query": {
    "match": {
      "content": "elastic stack"
    }
  }
}

上面显示的结果是:

{
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "failed" : 0
  },
  "valid" : true,
  "explanations" : [
    {
      "index" : "myindex2",
      "valid" : true,
      "explanation" : """content:"elastic stack" content:elk"""
    }
  ]
}

从上面的显示的结果来看,当我们搜索 elastic stack 时,它同时匹配 content: "elastic stack" 以及 content: elk。也就是说,如果文档里含有 elk,那么这个文档也将被搜索到。我们做如下的搜索:

GET myindex2/_search
{
  "query": {
    "match": {
      "content": "elastic stack"
    }
  }
}

那么上面的命令显示的结果是:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.977273,
    "hits" : [
      {
        "_index" : "myindex2",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.977273,
        "_source" : {
          "content" : "I like elk a lot"
        }
      }
    ]
  }
}

显然它已经把我们的想要的结果搜索出来了。


总结


在上面,我们展示了两种方法进行同义词的查询。在实际的使用中,你可以根据自己的情况适当进行选择。当然,我们有可以把上面的两种方法进行同时并用。通过这两种方法,也有可能会造成搜索的精确度的问题。这个是你必须要想清楚的。这个就像我们撒网打鱼一样,把网撒大了,捞上来的也有可能不是我们想要的。


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2月前
|
存储 自然语言处理 BI
|
2天前
|
存储 人工智能 API
(Elasticsearch)使用阿里云 infererence API 及 semantic text 进行向量搜索
本文展示了如何使用阿里云 infererence API 及 semantic text 进行向量搜索。
|
1月前
|
存储 缓存 固态存储
Elasticsearch高性能搜索
【11月更文挑战第1天】
43 6
|
1月前
|
API 索引
Elasticsearch实时搜索
【11月更文挑战第2天】
41 1
|
2月前
|
人工智能
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
179 2
|
2月前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
221 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
4月前
|
人工智能 自然语言处理 搜索推荐
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
19197 21
|
3月前
|
存储 缓存 自然语言处理
深度解析ElasticSearch:构建高效搜索与分析的基石
【9月更文挑战第8天】在数据爆炸的时代,如何快速、准确地从海量数据中检索出有价值的信息成为了企业面临的重要挑战。ElasticSearch,作为一款基于Lucene的开源分布式搜索和分析引擎,凭借其强大的实时搜索、分析和扩展能力,成为了众多企业的首选。本文将深入解析ElasticSearch的核心原理、架构设计及优化实践,帮助读者全面理解这一强大的工具。
246 7
|
3月前
|
JSON 监控 Java
Elasticsearch 入门:搭建高性能搜索集群
【9月更文第2天】Elasticsearch 是一个分布式的、RESTful 风格的搜索和分析引擎,基于 Apache Lucene 构建。它能够处理大量的数据,提供快速的搜索响应。本教程将指导你如何从零开始搭建一个基本的 Elasticsearch 集群,并演示如何进行简单的索引和查询操作。
252 3
|
4月前
|
存储 人工智能 安全
保障隐私的Elasticsearch AI搜索解决方案
【8月更文第28天】随着大数据和人工智能技术的发展,搜索引擎在日常生活中扮演着越来越重要的角色。然而,用户隐私保护成为了一个不容忽视的问题。本文将探讨如何在确保用户数据隐私的同时,利用Elasticsearch实现智能搜索功能。我们将介绍一种综合方案,该方案结合了加密技术、差分隐私、匿名化处理以及安全多方计算等方法,以保障用户数据的安全性
202 0

相关产品

  • 检索分析服务 Elasticsearch版