【算法】1863. 找出所有子集的异或总和再求和(java / c / c++ / python / go / rust)

简介: 一个数组的 异或总和 定义为数组中所有元素按位 XOR 的结果;如果数组为 空 ,则异或总和为 0 。 例如,数组 [2,5,6] 的 异或总和 为 2 XOR 5 XOR 6 = 1 。给你一个数组 nums ,请你求出 nums 中每个 子集 的 异或总和 ,计算并返回这些值相加之 和 。注意:在本题中,元素 相同 的不同子集应 多次 计数。数组 a 是数组 b 的一个 子集 的前提条件是:从 b 删除几个(也可能不删除)元素能够得到 a 。

1863. 找出所有子集的异或总和再求和:

一个数组的 异或总和 定义为数组中所有元素按位 XOR 的结果;如果数组为 空 ,则异或总和为 0 。

  • 例如,数组 [2,5,6] 的 异或总和 为 2 XOR 5 XOR 6 = 1 。

给你一个数组 nums ,请你求出 nums 中每个 子集 的 异或总和 ,计算并返回这些值相加之 和 。

注意:在本题中,元素 相同 的不同子集应 多次 计数。

数组 a 是数组 b 的一个 子集 的前提条件是:从 b 删除几个(也可能不删除)元素能够得到 a 。

样例 1

输入:
    nums = [1,3]
输出:
    6
解释:
    [1,3] 共有 4 个子集:
    空子集的异或总和是 0 。
    [1] 的异或总和为 1 。
    [3] 的异或总和为 3 。
    [1,3] 的异或总和为 1 XOR 3 = 2 。
    0 + 1 + 3 + 2 = 6

样例 2

输入:
    nums = [5,1,6]
输出:
    28
解释:
    [5,1,6] 共有 8 个子集:
    空子集的异或总和是 0 。
    [5] 的异或总和为 5 。
    [1] 的异或总和为 1 。
    [6] 的异或总和为 6 。
    [5,1] 的异或总和为 5 XOR 1 = 4 。
    [5,6] 的异或总和为 5 XOR 6 = 3 。
    [1,6] 的异或总和为 1 XOR 6 = 7 。
    [5,1,6] 的异或总和为 5 XOR 1 XOR 6 = 2 。
    0 + 5 + 1 + 6 + 4 + 3 + 7 + 2 = 28

样例 3

输入:
    nums = [3,4,5,6,7,8]
输出:
    480
解释:
    每个子集的全部异或总和值之和为 480 。

提示

  • 1 <= nums.length <= 12
  • 1 <= nums[i] <= 20

分析

  1. 直接按照题意照做
  • 穷举所有可能的子集,O(2n)的时间复杂度,慢了,但是能做出来至少说明基础良好吧,不过这是算法题,讨厌了,得优化。
  1. 找到内在规律
  • 这题欺负数学不好的同学,没关系,二当家的想办法不用专业数学知识去解释。
  • 多个数做异或操作就是看每个位上1的数量是奇数,还是偶数,0没有贡献(0和x异或,结果就是x,对于x相当于没做操作)。
  • 在其他所选数字不变的情况下,多选一个1和少选一个1,其中一定一个是奇数个1,另外一个是偶数个1。
  • 所以只要某一位上有一个1出现,那么子集中一定一半是奇数个1,一半是偶数个1。
  • 从数组里穷举子集,每个数字只有2种选择(选择它和不选它),一共有2n个子集,所以每个数字被选中2n-1次,所以每个数字中那些为1的位,也是做出2n-1次运算贡献哦。
  • x * 2n-1相当于x << (n - 1)。
  • 别问我为什么,问就是,因为所以,科学原理。

题解

java

题目说什么,我们干什么的方式

class Solution {
    public int subsetXORSum(int[] nums) {
        int ans = 0;

        // 数字个数
        final int n    = nums.length;
        // 用每一位表示某个数字是否被选中
        final int bits = 1 << n;

        for (int b = 0; b < bits; ++b) {
            int temp = 0;
            for (int i = 0; i < n; ++i) {
                if ((b & (1 << i)) > 0) {
                    temp ^= nums[i];
                }
            }
            ans += temp;
        }

        return ans;
    }
}

利用规律的方法

class Solution {
    public int subsetXORSum(int[] nums) {
        int bits = 0;

        // 所有位上出现过1的数
        for (int num : nums) {
            bits |= num;
        }

        // 这些1乘以贡献次数
        return bits << (nums.length - 1);
    }
}

c

int subsetXORSum(int* nums, int numsSize){
    int bits = 0;

    // 所有位上出现过1的数
    for (int i = 0; i < numsSize; ++i) {
        bits |= nums[i];
    }

    // 这些1乘以贡献次数
    return bits << (numsSize - 1);
}

c++

class Solution {
public:
    int subsetXORSum(vector<int>& nums) {
        int bits = 0;

        // 所有位上出现过1的数
        for (auto num : nums) {
            bits |= num;
        }

        // 这些1乘以贡献次数
        return bits << (nums.size() - 1);
    }
};

python

class Solution:
    def subsetXORSum(self, nums: List[int]) -> int:
        bits = 0
        ## 所有位上出现过1的数
        for num in nums:
            bits |= num
        ## 这些1乘以贡献次数
        return bits << (len(nums) - 1)

go

func subsetXORSum(nums []int) int {
    bits := 0

    // 所有位上出现过1的数
    for _, n := range nums {
        bits |= n
    }

    // 这些1乘以贡献次数
    return bits << (len(nums) - 1)
}

rust

impl Solution {
    pub fn subset_xor_sum(nums: Vec<i32>) -> i32 {
        let mut bits = 0;

        // 所有位上出现过1的数
        nums.iter().for_each(|n|{ bits |= n;});

        // 这些1乘以贡献次数
        bits << (nums.len() - 1)
    }
}

原题传送门:https://leetcode-cn.com/problems/sum-of-all-subset-xor-totals/


非常感谢你阅读本文~
放弃不难,但坚持一定很酷~
希望我们大家都能每天进步一点点~
本文由 二当家的白帽子:https://developer.aliyun.com/profile/sqd6avc7qgj7y 博客原创~

相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
84 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
6天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
93 63
|
17天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
64 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
17天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
55 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
17天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
62 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
21天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
37 2
|
2月前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
71 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
74 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
Go Docker Python
docker的python与go镜像的制作
docker的python与go镜像的制作
34 1