轮询锁使用时遇到的问题与解决方案!(3)

简介: 轮询锁使用时遇到的问题与解决方案!(3)

问题1:死循环


以上简易版的轮询锁,如果遇到有一个线程一直霸占或者长时间霸占锁资源的情况,就会导致这个轮询锁进入死循环的状态,它会尝试一直获取锁资源,这样就会造成新的问题,带来不必要的性能开销,具体示例如下。


反例


import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
publicclass SolveDeadLockExample {
    public static void main(String[] args) {
        Lock lockA = new ReentrantLock(); // 创建锁 A
        Lock lockB = new ReentrantLock(); // 创建锁 B
        // 创建线程 1(使用轮询锁)
        Thread t1 = new Thread(new Runnable() {
            @Override
            public void run() {
                // 调用轮询锁
                pollingLock(lockA, lockB);
            }
        });
        t1.start(); // 运行线程
        // 创建线程 2
        Thread t2 = new Thread(new Runnable() {
            @Override
            public void run() {
                lockB.lock(); // 加锁
                System.out.println("线程 2:获取到锁 B!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 2:等待获取 A...");
                    lockA.lock(); // 加锁
                    try {
                        System.out.println("线程 2:获取到锁 A!");
                    } finally {
                        lockA.unlock(); // 释放锁
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    // 如果此处代码未执行,线程 2 一直未释放锁资源
                    // lockB.unlock(); 
                }
            }
        });
        t2.start(); // 运行线程
    }
    /**
     * 轮询锁
     */
    public static void pollingLock(Lock lockA, Lock lockB) {
        while (true) {
            if (lockA.tryLock()) { // 尝试获取锁
                System.out.println("线程 1:获取到锁 A!");
                try {
                    Thread.sleep(1000);
                    System.out.println("线程 1:等待获取 B...");
                    if (lockB.tryLock()) { // 尝试获取锁
                        try {
                            System.out.println("线程 1:获取到锁 B!");
                        } finally {
                            lockB.unlock(); // 释放锁
                            System.out.println("线程 1:释放锁 B.");
                            break;
                        }
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lockA.unlock(); // 释放锁
                    System.out.println("线程 1:释放锁 A.");
                }
            }
            // 等待一秒再继续执行
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}


以上代码的执行结果如下:


微信图片_20220120214850.jpg


img


从上述结果可以看出,线程 1 轮询锁进入了死循环的状态。

相关文章
|
5月前
|
Arthas 监控 Java
深入解析与解决高并发下的线程池死锁问题
在高并发的互联网应用中,遇到线程池死锁问题导致响应延迟和超时。问题源于库存服务的悲观锁策略和线程池配置不当。通过以下方式解决:1) 采用乐观锁(如Spring Data JPA的@Version注解)替换悲观锁,减少线程等待;2) 动态调整线程池参数,如核心线程数、最大线程数和拒绝策略,以适应业务负载变化;3) 实施超时和重试机制,减少资源占用。这些改进提高了系统稳定性和用户体验。
224 2
|
6月前
|
消息中间件 缓存 监控
中间件锁定和并发问题
中间件锁定是一种机制,用于在并发访问时保护共享资源或数据。通过锁定,可以确保在给定时间内只有一个用户或线程能够访问或修改特定资源。
67 4
|
Java 调度 容器
【多线程与高并发】- 线程基础与状态
所谓线程就是操作系统(OS)能够进行运算调度的最小单位,是一个基本的CPU执行单元,也是执行程序流的最小单元。能够提高OS的并发性能,减小程序在并发执行时所付出的时空开销。线程是进程的一个实体,是被系统独立调度和分派的基本单位。
142 0
【多线程与高并发】- 线程基础与状态
|
存储 Java
锁的优化机制
从JDK1.6版本之后,synchronized本身也在不断优化锁的机制,有些情况下他并不会是一个很重量 级的锁了。优化机制包括自适应锁、自旋锁、锁消除、锁粗化、轻量级锁和偏向锁。
267 0
锁的优化机制
轮询锁使用时遇到的问题与解决方案!(7)
轮询锁使用时遇到的问题与解决方案!(7)
100 0
轮询锁使用时遇到的问题与解决方案!(7)
轮询锁使用时遇到的问题与解决方案!(4)
轮询锁使用时遇到的问题与解决方案!(4)
119 0
轮询锁使用时遇到的问题与解决方案!(4)
轮询锁使用时遇到的问题与解决方案!(6)
轮询锁使用时遇到的问题与解决方案!(6)
91 0
轮询锁使用时遇到的问题与解决方案!(6)
轮询锁使用时遇到的问题与解决方案!(1)
轮询锁使用时遇到的问题与解决方案!(1)
93 0
轮询锁使用时遇到的问题与解决方案!(1)
轮询锁使用时遇到的问题与解决方案!(2)
轮询锁使用时遇到的问题与解决方案!(2)
120 0
轮询锁使用时遇到的问题与解决方案!(2)
死锁终结者:顺序锁和轮询锁!(1)
死锁终结者:顺序锁和轮询锁!(1)
106 0
死锁终结者:顺序锁和轮询锁!(1)