synchronized 优化手段之锁膨胀机制!(1)

简介: synchronized 优化手段之锁膨胀机制!(1)

synchronized 在 JDK 1.5 之前性能是比较低的,在那时我们通常会选择使用 Lock 来替代 synchronized。然而这个情况在 JDK 1.6 时就发生了改变,JDK 1.6 中对 synchronized 进行了各种优化,性能也得到了大幅的提升,这也是目前版本中还能经常见到 synchronized 身影的重要原因之一。当然除了性能之外,synchronized 的使用也非常便利,这也是它流行的重要原因。


在众多优化方案中,锁膨胀机制是提升 synchronized 性能最有利的手段之一(其他优化方案我们后面再讲),本文我们重点来看什么是锁膨胀?以及锁膨胀的各种细节。


正文


在 JDK 1.5 时,synchronized 需要调用监视器锁(Monitor)来实现,监视器锁本质上又是依赖于底层的操作系统的 Mutex Lock(互斥锁)实现的,互斥锁在进行释放和获取的时候,需要从用户态转换到内核态,这样就造成了很高的成本,也需要较长的执行时间,这种依赖于操作系统 Mutex Lock 实现的锁我们称之为“重量级锁”。


什么是用户态和内核态?


用户态(User Mode):当进程在执行用户自己的代码时,则称其处于用户运行态。内核态(Kernel Mode):当一个任务(进程)执行系统调用而陷入内核代码中执行时,我们就称进程处于内核运行态,此时处理器处于特权级最高的内核代码中执行。


image.png


为什么分内核态和用户态?


假设没有内核态和用户态之分,程序就可以随意读写硬件资源了,比如随意读写和分配内存,这样如果程序员一不小心将不适当的内容写到了不该写的地方,很可能就会导致系统崩溃。


而有了用户态和内核态的区分之后,程序在执行某个操作时会进行一系列的验证和检验之后,确认没问题之后才可以正常的操作资源,这样就不会担心一不小心就把系统搞坏的情况了,也就是有了内核态和用户态的区分之后可以让程序更加安全的运行,但同时两种形态的切换会导致一定的性能开销。


锁膨胀


在 JDK 1.6 时,为了解决获取锁和释放锁带来的性能消耗,引入了“偏向锁”和“轻量级锁”的状态,此时 synchronized 的状态总共有以下 4 种:


  1. 无锁


  1. 偏向锁


  1. 轻量级锁


  1. 重量级锁


锁的级别按照上述先后顺序依次升级,我们把这个升级的过程称之为“锁膨胀”。


微信图片_20220120205245.jpg


PS:到现在为止,锁的升级是单向的,也就是说只能从低到高升级(无锁 -> 偏向锁 -> 轻量锁锁 -> 重量级锁),不会出现锁降级的情况。


锁膨胀为什么能优化 synchronized 的性能?当我们了解了这些锁状态之后自然就会有答案,下面我们一起来看。

相关文章
|
6月前
|
存储 监控 安全
解锁ThreadLocal的问题集:如何规避多线程中的坑
解锁ThreadLocal的问题集:如何规避多线程中的坑
293 0
|
5月前
|
算法 安全 Java
Java性能优化(四)-多线程调优-Synchronized优化
JVM在JDK1.6中引入了分级锁机制来优化Synchronized,当一个线程获取锁时,首先对象锁将成为一个偏向锁,这样做是为了优化同一线程重复获取导致的用户态与内核态的切换问题;其次如果有多个线程竞争锁资源,锁将会升级为轻量级锁,它适用于在短时间内持有锁,且分锁有交替切换的场景;轻量级锁还使用了自旋锁来避免线程用户态与内核态的频繁切换,大大地提高了系统性能;但如果锁竞争太激烈了,那么同步锁将会升级为重量级锁。减少锁竞争,是优化Synchronized同步锁的关键。
92 2
|
3月前
|
缓存 Java 数据库连接
更简的并发代码,更强的并发控制
更简的并发代码,更强的并发控制
|
4月前
|
算法 Java 编译器
多线程线程安全问题之系统层面的锁优化有哪些常见的策略
多线程线程安全问题之系统层面的锁优化有哪些常见的策略
|
4月前
|
Java
多线程线程安全问题之什么是锁的粒度,减少锁的粒度有哪些好处
多线程线程安全问题之什么是锁的粒度,减少锁的粒度有哪些好处
|
5月前
|
安全 Java 程序员
Java并发编程中的锁机制与优化策略
【6月更文挑战第17天】在Java并发编程的世界中,锁是维护数据一致性和线程安全的关键。本文将深入探讨Java中的锁机制,包括内置锁、显式锁以及读写锁的原理和使用场景。我们将通过实际案例分析锁的优化策略,如减少锁粒度、使用并发容器以及避免死锁的技巧,旨在帮助开发者提升多线程程序的性能和可靠性。
|
5月前
|
安全 Java 调度
Java并发编程:优化多线程应用的性能与安全性
在当今软件开发中,多线程编程已成为不可或缺的一部分,尤其在Java应用程序中更是如此。本文探讨了Java中多线程编程的关键挑战和解决方案,重点介绍了如何通过合理的并发控制和优化策略来提升应用程序的性能和安全性,以及避免常见的并发问题。
60 1
|
5月前
|
算法 安全 Java
Java性能优化(五)-多线程调优-Lock同步锁的优化
基本特点Lock锁的基本操作通常基于乐观锁实现,尽管在某些情况下(如阻塞时)它也可能采用悲观锁的策略。通过对比图,我们可以清晰地看到两种同步锁的基本特点。Lock同步锁与Synchronized的比较在Java中,同步锁机制是确保多线程安全访问共享资源的重要手段。与JVM隐式管理锁的Synchronized相比,Lock同步锁(以下简称Lock锁)提供了更细粒度的控制,通过显式地获取和释放锁,为开发者提供了更大的灵活性。一、基本特点。
121 1
|
6月前
|
安全 Java 编译器
Java并发编程中的锁优化策略
【5月更文挑战第30天】 在多线程环境下,确保数据的一致性和程序的正确性是至关重要的。Java提供了多种锁机制来管理并发,但不当使用可能导致性能瓶颈或死锁。本文将深入探讨Java中锁的优化策略,包括锁粗化、锁消除、锁降级以及读写锁的使用,以提升并发程序的性能和响应能力。通过实例分析,我们将了解如何在不同场景下选择和应用这些策略,从而在保证线程安全的同时,最小化锁带来的开销。
|
5月前
|
算法 Java 开发者
深入理解死锁的原因、表现形式以及解决方法,对于提高Java并发编程的效率和安全性具有重要意义
【6月更文挑战第10天】本文探讨了Java并发编程中的死锁问题,包括死锁的基本概念、产生原因和解决策略。死锁是因线程间争夺资源导致的互相等待现象,常由互斥、请求与保持、非剥夺和循环等待条件引起。常见死锁场景包括资源请求顺序不一致、循环等待等。解决死锁的方法包括避免嵌套锁、设置锁获取超时、规定锁顺序、检测与恢复死锁,以及使用高级并发工具。理解并防止死锁有助于提升Java并发编程的效率和系统稳定性。
393 0