阿里云天池大赛赛题解析——机器学习篇-赛题一(6)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 阿里云是国内知名的云计算、大数据、人工智能技术型公司,是阿里巴巴集团最重要的技术部门。阿里云天池是阿里云面向开发者和教育行业的资源输出部门,天池大赛是国内最大规模的人工智能算法赛事,致力于汇聚全球AI精英为企业解决真实问题。自2014年至今已举办数十次行业顶级算法赛事,全球参赛开发者超过30万人。然而对于更广大的普通开发者和大学生群体来说,高规格的算法大赛仍然具有很高的门槛。本书就是针对受众最广泛的新手人群而编写的,精选阿里巴巴最典型的人工智能算法应用案例,邀请天池大赛最顶级的获奖选手联合编撰,公开那些鲜为人知的技术秘籍,力图使每一个涉足数据智能算法技术的开发者从中获益......

2.2 赛题数据探索

2.2.1 导入工具包

      先要导入一些Python 工具包,用于数据计算和可视化显示。

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from scipy import stats

import warnings

warnings.filterwarnings("ignore")

%matplotlib inline

2.2.2 读取数据

      使用Pandas 的read_csv()函数进行数据读取,由于读取的是文本文件(.txt),因此需要设置分割符为'\t'。

train_data_file = "./zhengqi_train.txt"

test_data_file = "./zhengqi_test.txt"

train_data = pd.read_csv(train_data_file, sep='\t',encoding='utf8')

test_data = pd.read_csv(test_data_file, sep='\t', encoding='utf-8')

2.2.3 查看数据

      查看训练集的基本信息:

train_data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 2888 entries, 0 to 2887

Data columns (total 39 columns):

V0          2888 non-null float64

...

target 2888 non-null float64

dtypes: float64(39)

memory usage: 880.1 KB

      可以发现:①此训练集数据共有2888 个样本,数据中有V0~V37 共38 个特征变量,变量类型都为数值型,所有数据特征没有缺失值。②数据字段采用了脱敏处理,删除了特征数据的具体含义。③target 字段为标签变量。

      查看测试集的基本信息:

test_data.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1925 entries, 0 to 1924

Data columns (total 38 columns):

V0        1925 non-null float64

...

V37 1925 non-null float64

dtypes: float64(38)

memory usage: 571.6 KB

      可以发现:①测试集数据共有1925 个样本,数据中有V0~V37 共38 个特征变量,变量类型都为数值型。②测试集中没有target 字段(标签变量),需要我们预测并提交。

      查看训练集的统计信息:

train_data.describe()

10.jpg

      查看测试集的统计信息:

test_data.describe()

11.jpg

      上面结果显示了数据的统计信息,如样本数、数据的均值(mean)、标准差(std)、最小值、最大值等。

      查看训练集的字段信息:

train_data.head()

12.jpg

      查看测试集的字段信息:

test_data.head()

13.jpg

      上面分别显示了训练集和测试集的前5 条数据,可以看到数据都是浮点型,变量为数值型和连续型。



相关文章
|
5天前
|
人工智能 运维 API
【阿里云】操作系统控制台操作体验与性能评测全解析
操作系统控制台是现代云计算环境中进行系统管理和运维的重要工具,提供系统概览、诊断、观测、管理等功能,支持API、SDK、CLI等管理方式。通过创建角色、系统配置和组件安装等操作,用户可以高效管理云端资源,提升操作系统的使用效率和稳定性。尤其适合需要高效管理操作系统的用户及学习云计算、网络管理的学生。建议增强自定义功能、优化性能报告和完善文档支持,以进一步提升用户体验。
38 20
【阿里云】操作系统控制台操作体验与性能评测全解析
|
14天前
|
存储 人工智能 云栖大会
【云栖大会】阿里云设计中心 × 教育部协同育人项目成果展,PAI ArtLab助力高校AIGC教育新路径
【云栖大会】阿里云设计中心 × 教育部协同育人项目成果展,PAI ArtLab助力高校AIGC教育新路径
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署通义千问 QwQ-32B 模型,阿里云 PAI 最佳实践
3月6日阿里云发布并开源了全新推理模型通义千问 QwQ-32B,在一系列权威基准测试中,千问QwQ-32B模型表现异常出色,几乎完全超越了OpenAI-o1-mini,性能比肩Deepseek-R1,且部署成本大幅降低。并集成了与智能体 Agent 相关的能力,够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署 QwQ-32B,本实践带您部署体验专属 QwQ-32B模型服务。
|
11天前
|
缓存 边缘计算 安全
阿里云CDN:全球加速网络的实践创新与价值解析
在数字化浪潮下,用户体验成为企业竞争力的核心。阿里云CDN凭借技术创新与全球化布局,提供高效稳定的加速解决方案。其三层优化体系(智能调度、缓存策略、安全防护)确保低延迟和高命中率,覆盖2800+全球节点,支持电商、教育、游戏等行业,帮助企业节省带宽成本,提升加载速度和安全性。未来,阿里云CDN将继续引领内容分发的行业标准。
58 7
|
17天前
|
云安全 人工智能 安全
阿里云网络安全体系解析:如何构建数字时代的"安全盾牌"
在数字经济时代,阿里云作为亚太地区最大的云服务提供商,构建了行业领先的网络安全体系。本文解析其网络安全架构的三大核心维度:基础架构安全、核心技术防护和安全管理体系。通过技术创新与体系化防御,阿里云为企业数字化转型提供坚实的安全屏障,确保数据安全与业务连续性。案例显示,某金融客户借助阿里云成功拦截3200万次攻击,降低运维成本40%,响应时间缩短至8分钟。未来,阿里云将继续推进自适应安全架构,助力企业提升核心竞争力。
|
25天前
|
人工智能 自然语言处理 网络安全
基于阿里云 Milvus + DeepSeek + PAI LangStudio 的低成本高精度 RAG 实战
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
|
25天前
|
存储 弹性计算 人工智能
阿里云发票申请图文教程及常见问题解析
在购买完阿里云服务器或者其他云产品之后,如何申请发票成为了许多用户关注的焦点。尤其是对于初次购买阿里云服务器的用户来说,发票申请流程可能并不熟悉。本文将为大家详细介绍阿里云服务器购买之后如何申请发票,以及申请过程中可能遇到的常见问题,帮助大家轻松完成发票申请。
|
16天前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
|
16天前
|
人工智能 自然语言处理 安全
基于阿里云向量检索 Milvus 版与 PAI 搭建高效的检索增强生成(RAG)系统
基于阿里云向量检索 Milvus 版与 PAI 搭建高效的检索增强生成(RAG)系统
|
3天前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
42 29

热门文章

最新文章

推荐镜像

更多