【数据挖掘】基于密度的聚类方法 - DBSCAN 方法 ( K-Means 方法缺陷 | 基于密度聚类原理及概念 | ε-邻域 | 核心对象 | 直接密度可达 | 密度可达 | 密度连接 )(三)

简介: 【数据挖掘】基于密度的聚类方法 - DBSCAN 方法 ( K-Means 方法缺陷 | 基于密度聚类原理及概念 | ε-邻域 | 核心对象 | 直接密度可达 | 密度可达 | 密度连接 )(三)

IX . 密度可达


1 . 密度可达 : p pp 密度可达 q qq , 存在一个 由 核心对象 组成的链 , p pp 直接密度可达 p 1 p_1p

1


 , p 1 p_1p

1


 直接密度可达 p 2 p_2p

2


 , ⋯ \cdots⋯ , p n − 1 p_{n-1}p

n−1


 直接密度可达 p n p_np

n


 , 此时称为 p pp 密度可达 q qq ;



2 . 链 上的核心对象要求 : 链的起点 , 和经过的点 , 必须是核心对象 , 链的最后一个点 , 可以是任意对象 ;



3 . 密度可达 与 直接密度可达区别 : 密度可达 与 直接密度可达 的概念在于 是直接可达 , 还是 间接可达 ;



4 . 密度可达图示 : p pp 直接密度可达 q qq , q qq 直接密度可达 t tt , p pp 密度可达 t tt ;


image.png




X . 密度连接


1 . 密度连接 : p pp 和 q qq 两个样本 , 存在一个中间样本对象 O OO , O OO 到 p pp 是 密度可达 的 , O OO 到 q qq 是 密度可达 的 ;



2 . 密度连接方向 : O OO 可以密度连接 p pp 和 q qq 样本 , 但是 p pp 和 q qq 不一定能走到 O OO , 它们可能不是核心对象 ;



3 . 核心对象要求 : O OO 以及到 样本 p pp 或者 样本 q qq 中间的样本都必须是核心对象 , 但是 p pp 和 q qq 两个对象不要求是核心对象, 它们可以是普通的样本点 ;



4 . 密度连接图示 : 下图中 , 样本点 O OO 密度可达 p pp 和 q qq , 那么 p pp 和 q qq 是密度连接的 ; 其中 p , q p, qp,q 不是核心对象 , O , p 1 , p 2 , q 1 , q 2 O , p_1 , p_2 , q_1 , q_2O,p

1


,p

2


,q

1


,q

2


 是核心对象 ;


image.png

目录
相关文章
|
6月前
|
编解码 算法 数据挖掘
【数据挖掘】聚类趋势估计、簇数确定、质量测定等评估方法详解(图文解释 超详细)
【数据挖掘】聚类趋势估计、簇数确定、质量测定等评估方法详解(图文解释 超详细)
172 0
|
6月前
|
SQL 数据可视化 算法
SQL Server聚类数据挖掘信用卡客户可视化分析
SQL Server聚类数据挖掘信用卡客户可视化分析
|
3月前
|
数据采集 资源调度 算法
【数据挖掘】十大算法之K-Means K均值聚类算法
K-Means聚类算法的基本介绍,包括算法步骤、损失函数、优缺点分析以及如何优化和改进算法的方法,还提到了几种改进的K-Means算法,如K-Means++和ISODATA算法。
116 4
|
3月前
|
数据采集 自然语言处理 数据可视化
基于Python的社交媒体评论数据挖掘,使用LDA主题分析、文本聚类算法、情感分析实现
本文介绍了基于Python的社交媒体评论数据挖掘方法,使用LDA主题分析、文本聚类算法和情感分析技术,对数据进行深入分析和可视化,以揭示文本数据中的潜在主题、模式和情感倾向。
185 0
|
3月前
|
数据采集 自然语言处理 数据可视化
基于python数据挖掘在淘宝评价方面的应用与分析,技术包括kmeans聚类及情感分析、LDA主题分析
本文探讨了基于Python数据挖掘技术在淘宝评价分析中的应用,涵盖了数据采集、清洗、预处理、评论词频分析、情感分析、聚类分析以及LDA主题建模和可视化,旨在揭示淘宝客户评价中的潜在模式和情感倾向,为商家和消费者提供决策支持。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】PCA 主成分分析算法过程及原理讲解
主成分分析(PCA)的原理和算法过程。
82 0
|
6月前
|
机器学习/深度学习 数据采集 搜索推荐
PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像
PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像
|
6月前
|
数据采集 机器学习/深度学习 存储
MATLAB用改进K-Means(K-均值)聚类算法数据挖掘高校学生的期末考试成绩
MATLAB用改进K-Means(K-均值)聚类算法数据挖掘高校学生的期末考试成绩
|
6月前
|
数据采集 算法 搜索推荐
数据挖掘实战:基于KMeans算法对超市客户进行聚类分群
数据挖掘实战:基于KMeans算法对超市客户进行聚类分群
803 0
|
6月前
|
机器学习/深度学习 自然语言处理 数据可视化
【Python百宝箱】数据科学的黄金三角:数据挖掘和聚类
【Python百宝箱】数据科学的黄金三角:数据挖掘和聚类
228 2

热门文章

最新文章

下一篇
无影云桌面