3 . 决策树模型 :
建立模型 : 将上述数据集的 属性 ( 特征 ) 转换为树状的模型 ;
确定树根 : 首先要确定哪个属性作为树根 , 这个选择是有一定要求的 , 不能随意指定一个任意的特征作为树根 ;
4 . 决策树 属性划分 :
属性划分策略 : 根据一定的策略 , 确定哪个属性作为树根 , 然后每个子树 , 在确定剩余的哪个属性作为子树的树根 , 这是递归问题 ;
属性划分的算法性质 : 递归算法 ;
如何决定树根属性 : 确定总树的树根 , 及每个子树的树根 , 要求根据数据的 属性 ( 特征 ) 进行的决策次数尽量能做到最少 ;
V . 决策树算法性能要求
1 . 决策树的高度 :
① 决策树最大高度 : 决策属性的个数 ; ( 每个属性都要决策一次 , 才能预测出结果 )
② 决策时最小高度 : 1 ; ( 只需要决策一次 , 就可以预测出结果 )
2 . 决策树性能 : 决策树越矮越好 , 即预测某特征 , 进行的决策次数越少越好 ;
3 . 树根属性 : 越重要的属性 , 其越能将数据最大可能拆分开 , 将重要的属性放在树根 ;
VI . 决策树模型创建 ( 递归创建决策树 )
1 . 决策树模型创建 : 决策树模型创建的核心就是选择合适的树根 , 将重要的属性放在树根 , 然后子树中 , 继续选择子树中重要的属性放在子树的树根 , 依次递归 , 最终得到决策结果 ( 叶子节点 ) ;
2 . 决策树创建算法 ( 递归 ) : 使用递归算法 , 递归算法分为递归操作 和 递归停止条件 ;
3 . 递归操作 : 每个步骤先选择属性 , 选择好属性后 , 根据 总树 ( 子树 ) 的树根属性划分训练集 ;
① 选择属性 : 递归由上到下决定每一个节点的属性 , 依次递归构造决策树 ;
② 数据集划分 : 开始决策时 , 所有的数据都在树根 , 由树根属性来划分数据集 ;
③ 属性离散化 : 如果属性的值是连续值 , 需要将连续属性值离散化 ; 如 : 100 分满分 , 将 60 分以下分为不及格数据 , 60 分以上分为及格数据 ;
4 . 递归停止的条件 :
① 子树分类完成 : 节点上的子数据集都属于同一个类别 , 该节点就不再向下划分 , 称为叶子节点 ;
② 属性 ( 节点 ) 全部分配完毕 : 所有的属性都已经分配完毕 , 决策树的高度等于属性个数 ;
③ 所有样本分类完毕 : 所有的样本数据集都分类完成 ;
VII . 决策树 树根属性 选择
1 . 属性选择方法 : 树根属性选择的方法很多 , 这里介绍一种常用的方法 , 信息增益 ;
2 . 信息增益 : 信息增益 效果越大 , 其作为树根属性 , 划分的数据集分类效果越明显 ;
3 . 信息 和 熵 : 涉及 信息论 的知识点 , 建议有空就去 B站 刷一下信息论课程 ;
① 信息 与 熵 的关系 : 信息 会 消除 熵 , 熵 代表了不确定性 , 信息用来消除不确定性 ;
② 信息增益 : 信息增益大的属性 , 能最大消除熵的不确定性 ;
4 . 决策树中的信息增益 : 属性的 信息增益 越大 , 就越能将分类效果达到最大 ;
如 : 想要从用户数据集中找到是否能买奢侈品的用户 , 先把高收入群体划分出来 , 将低收入者从数据集中去除 , 这个收入水平的属性 ( 特征 ) , 信息增益就很大 ;