【Android FFMPEG 开发】FFMPEG 音视频同步 ( 音视频同步方案 | 视频帧 FPS 控制 | H.264 编码 I / P / B 帧 | PTS | 音视频同步 )(二)

简介: 【Android FFMPEG 开发】FFMPEG 音视频同步 ( 音视频同步方案 | 视频帧 FPS 控制 | H.264 编码 I / P / B 帧 | PTS | 音视频同步 )(二)

XI . 视频帧绘制的 FPS 帧间隔


1 . 根据帧率 ( fps ) 计算两次图像绘制之间的间隔 : 视频绘制时 , 先参考帧率 FPS 计算出一个视频帧间隔 , 计算公式是 1 f p s \frac{1}{fps}

fps

 , 即如果 FPS 为 100Hz , 那么1 秒钟绘制 100 张画面 , 每隔 10ms 绘制一张图像 ;



2 . 帧率间隔计算方式 : 上面计算出了 fps 值 , 这里直接使用 1 / fps 值 , 可以获取帧之间的间隔时间 , 单位是秒 ;


AVRational frame_rate = stream->avg_frame_rate;
int fps = frame_rate.num / frame_rate.den;
//根据帧率 ( fps ) 计算两次图像绘制之间的间隔
//  注意单位换算 : 实际使用的是微秒单位 , 使用 av_usleep ( ) 方法时 , 需要传入微秒单位 , 后面需要乘以 10 万
double frame_delay = 1.0 / fps;



注意单位换算 : 实际使用的是微秒单位 , 使用 av_usleep ( ) 方法时 , 需要传入微秒单位 , 后面需要乘以 10 万




XII . 视频帧绘制的额外延迟间隔


1 . 解码额外延迟 : 视频帧解码时 , 还需要添加一个额外的延迟间隔 extra_delay , 该值表示需要在视频帧之间添加一个额外延迟 , 这是系统规定的 ;



2 . 额外延迟 extra_delay 的计算方式 : extra_delay = repeat_pict / (2*fps) , 需要获取 repeat_pict 值 ;



3 . repeat_pict 原型 : 该值封装在了 AVFrame 视频帧中 , 原型如下 :

/**
 * When decoding, this signals how much the picture must be delayed.
 * extra_delay = repeat_pict / (2*fps)
 */
int repeat_pict



4 . 额外延迟计算代码示例 :


//解码时 , 该值表示画面需要延迟多长时间在显示
//  extra_delay = repeat_pict / (2*fps)
//  需要使用该值 , 计算一个额外的延迟时间
//  这里按照文档中的注释 , 计算一个额外延迟时间
double extra_delay = avFrame->repeat_pict / ( fps * 2 );




XIII . 视频帧绘制的间隔


1 . 视频帧间隔 : 视频帧绘制之间的间隔是 FPS 帧间隔 ( frame_delay ) + 额外延迟 ( extra_delay ) 的总和 ;



2 . 代码示例如下 : 上面已经根据 FPS 值计算出了理论帧间隔 , 和 根据 AVFrame 中封装的 repeat_pict 计算出了 额外延迟 extra_delay , 二者相加 , 就是总的延迟 , 单位是秒 , 如果需要做延迟操作 , 需要传递给休眠函数 av_usleep ( ) 微妙值 , 在秒的基础上乘以 10 万 ;


//计算总的帧间隔时间 , 这是真实的间隔时间
double total_frame_delay = frame_delay + extra_delay;




XIV . 获取视频当前播放时间


1 . 视频的 PTS 时间 : 视频帧也可以像音频一样直接获取 PTS 时间 , 并计算其相对的播放时间 ;



2 . 视频的推荐时间获取方式 : 但是视频中建议使用另外一个值 best_effort_timestamp , 该值也是视频的播放时间 , 但是比 pts 更加精确 , best_effort_timestamp 参考了其它的许多因素 , 如编码 , 解码等参数 ;


该 best_effort_timestamp 值 , 在大部分时候等于 pts 值 ;



3 . best_effort_timestamp 原型 : 在 AVFrame 结构体中定义 ;


/**
 * frame timestamp estimated using various heuristics, in stream time base
 * - encoding: unused
 * - decoding: set by libavcodec, read by user.
 */
int64_t best_effort_timestamp;



4 . 计算视频的播放时间 : 从 AVFrame 中获取了 best_effort_timestamp 值后 , 还需要乘以 time_base 时间单位值 , 转换成秒 , 代码示例如下 :


//获取当前画面的相对播放时间 , 相对 : 即从播放开始到现在的时间
//  该值大多数情况下 , 与 pts 值是相同的
//  该值比 pts 更加精准 , 参考了更多的信息
//  转换成秒 : 这里要注意 pts 需要转成 秒 , 需要乘以 time_base 时间单位
//  其中 av_q2d 是将 AVRational 转为 double 类型
double vedio_best_effort_timestamp_second = avFrame->best_effort_timestamp * av_q2d(time_base);




XV . 视频帧绘制的间隔控制


1 . 延迟控制策略 :



① 延迟控制 ( 降低速度 ) : 通过调用 int av_usleep(unsigned usec) 函数 , 调整视频帧之间的间隔 , 来控制视频的播放速度 , 增加帧间隔 , 就会降低视频的播放速度 , 反之会增加视频的播放速度 ;


② 丢包控制 ( 增加速度 ) : 如果视频慢了 , 说明积压的视频帧过多 , 可以通过丢包 , 增加视频播放速度 ;



2 . 视频本身的帧率 : 视频本身有一个 FPS 绘制帧率 , 默认状态下 , 每个帧之间的间隔为 1/fps 秒 , 所有的控制都是相当于该间隔进行调整 , 如增加间隔 , 是在该 1/fps 秒的基础上增加的 ;



3 . 计算视频与音频的间隔 : 将从视频帧中获取的播放时间 与 音频帧中获取的播放时间进行对比 , 计算出一个差值 ;



4 . 降低视频速度的实现 : 如果视频比音频快 , 那么在帧率间隔基础上 , 增加该差值 , 多等待一会 ;



5 . 提高视频速度实现 : 如果视频速度慢 , 那么需要丢弃一部分视频帧 , 以赶上音频播放的进度 ;




XVI . 视频帧丢弃方案


1 . 编码帧 AVPacket 丢弃 : 如果丢弃的视频帧是 AVPacket 编码帧 , 那么需要考虑 H.264 视频帧编码类型 ;



① 保留关键帧 : I 帧不能丢 , 只能丢弃 B 帧 和 P 帧 ;


② 丢弃关键帧方案 : 如果丢弃 I 帧 , 就需要将 I 帧后面的 B / P 帧 都要丢掉 , 直到下一个 I 帧 ;


③ 推荐方案 : 一般情况下是将两个 I 帧之间的 B / P 帧丢弃 ; 因为丢掉一帧 B 帧或 P 帧 , 意味着后面的 B / P 帧也无法解析了 , 后面的 B / P 帧也一并丢弃 , 直到遇到 I 帧 ;



2 . 解码帧 AVFrame 丢弃 : 每个 AVFrame 都代表了一个完整的图像数据包 , 可以丢弃任何一帧数据 , 因此这里建议丢包时选择 AVFrame 丢弃 ;




XVII . 音视频同步代码示例


音视频同步代码示例 :

//根据帧率 ( fps ) 计算两次图像绘制之间的间隔
//  注意单位换算 : 实际使用的是微秒单位 , 使用 av_usleep ( ) 方法时 , 需要传入微秒单位 , 后面需要乘以 10 万
double frame_delay = 1.0 / fps;
while (isPlaying){
    //从线程安全队列中获取 AVFrame * 图像
    ...
    //获取当前画面的相对播放时间 , 相对 : 即从播放开始到现在的时间
    //  该值大多数情况下 , 与 pts 值是相同的
    //  该值比 pts 更加精准 , 参考了更多的信息
    //  转换成秒 : 这里要注意 pts 需要转成 秒 , 需要乘以 time_base 时间单位
    //  其中 av_q2d 是将 AVRational 转为 double 类型
    double vedio_best_effort_timestamp_second = avFrame->best_effort_timestamp * av_q2d(time_base);
    //解码时 , 该值表示画面需要延迟多长时间在显示
    //  extra_delay = repeat_pict / (2*fps)
    //  需要使用该值 , 计算一个额外的延迟时间
    //  这里按照文档中的注释 , 计算一个额外延迟时间
    double extra_delay = avFrame->repeat_pict / ( fps * 2 );
    //计算总的帧间隔时间 , 这是真实的间隔时间
    double total_frame_delay = frame_delay + extra_delay;
    //将 total_frame_delay ( 单位 : 秒 ) , 转换成 微秒值 , 乘以 10 万
    unsigned microseconds_total_frame_delay = total_frame_delay * 1000 * 1000;
    if(vedio_best_effort_timestamp_second == 0 ){
        //如果播放的是第一帧 , 或者当前音频没有播放 , 就要正常播放
        //休眠 , 单位微秒 , 控制 FPS 帧率
        av_usleep(microseconds_total_frame_delay);
    }else{
        //如果不是第一帧 , 要开始考虑音视频同步问题了
        //获取音频的相对时间
        if(audioChannel != NULL) {
            //音频的相对播放时间 , 这个是相对于播放开始的相对播放时间
            double audio_pts_second = audioChannel->audio_pts_second;
            //使用视频相对时间 - 音频相对时间
            double second_delta = vedio_best_effort_timestamp_second - audio_pts_second;
            //将相对时间转为 微秒单位
            unsigned microseconds_delta = second_delta * 1000 * 1000;
            //如果 second_delta 大于 0 , 说明视频播放时间比较长 , 视频比音频快
            //如果 second_delta 小于 0 , 说明视频播放时间比较短 , 视频比音频慢
            if(second_delta > 0){
                //视频快处理方案 : 增加休眠时间
                //休眠 , 单位微秒 , 控制 FPS 帧率
                av_usleep(microseconds_total_frame_delay + microseconds_delta);
            }else if(second_delta < 0){
                //视频慢处理方案 :
                //  ① 方案 1 : 减小休眠时间 , 甚至不休眠
                //  ② 方案 2 : 视频帧积压太多了 , 这里需要将视频帧丢弃 ( 比方案 1 极端 )
                if(fabs(second_delta) >= 0.05){
                    //丢弃解码后的视频帧
                    ...
                    //终止本次循环 , 继续下一次视频帧绘制
                    continue;
if
                }else{
                    //如果音视频之间差距低于 0.05 秒 , 不操作 ( 50ms )
                }
            }
        }
    }




目录
相关文章
|
9天前
|
消息中间件 网络协议 Java
Android 开发中实现数据传递:广播和Handler
Android 开发中实现数据传递:广播和Handler
14 1
|
11天前
|
Linux 编译器 Android开发
FFmpeg开发笔记(九)Linux交叉编译Android的x265库
在Linux环境下,本文指导如何交叉编译x265的so库以适应Android。首先,需安装cmake和下载android-ndk-r21e。接着,下载x265源码,修改crosscompile.cmake的编译器设置。配置x265源码,使用指定的NDK路径,并在配置界面修改相关选项。随后,修改编译规则,编译并安装x265,调整pc描述文件并更新PKG_CONFIG_PATH。最后,修改FFmpeg配置脚本启用x265支持,编译安装FFmpeg,将生成的so文件导入Android工程,调整gradle配置以确保顺利运行。
36 1
FFmpeg开发笔记(九)Linux交叉编译Android的x265库
|
12天前
|
Unix Linux Shell
FFmpeg开发笔记(八)Linux交叉编译Android的FFmpeg库
在Linux环境下交叉编译Android所需的FFmpeg so库,首先下载`android-ndk-r21e`,然后解压。接着,上传FFmpeg及相关库(如x264、freetype、lame)源码,修改相关sh文件,将`SYSTEM=windows-x86_64`改为`SYSTEM=linux-x86_64`并删除回车符。对x264的configure文件进行修改,然后编译x264。同样编译其他第三方库。设置环境变量`PKG_CONFIG_PATH`,最后在FFmpeg源码目录执行配置、编译和安装命令,生成的so文件复制到App工程指定目录。
43 9
FFmpeg开发笔记(八)Linux交叉编译Android的FFmpeg库
|
3天前
|
监控 Java Android开发
安卓应用开发:打造高效用户界面的五大策略
【4月更文挑战第29天】 在安卓应用开发的世界中,构建一个既美观又高效的用户界面(UI)对于吸引和保留用户至关重要。本文将深入探讨五种策略,这些策略可以帮助开发者优化安卓应用的UI性能。我们将从布局优化讲起,逐步过渡到绘制优化、内存管理、异步处理以及最终的用户交互细节调整。通过这些实践技巧,你将能够为用户提供流畅而直观的体验,确保你的应用在竞争激烈的市场中脱颖而出。
|
2天前
|
存储 Java Android开发
安卓应用开发中的内存优化策略
【4月更文挑战第30天】在移动开发领域,尤其是安卓平台上,内存管理是影响应用性能和用户体验的关键因素。由于安卓设备的硬件资源有限,不合理的内存使用会导致应用响应缓慢、消耗过多电量甚至崩溃。本文将探讨针对安卓平台的内存优化技巧,旨在帮助开发者提高应用的性能和稳定性,从而提升用户满意度。我们将详细讨论内存泄漏的预防、合理的内存分配策略以及高效的内存回收方法。
|
2天前
|
前端开发 Android开发 iOS开发
【Flutter前端技术开发专栏】Flutter在Android与iOS上的性能对比
【4月更文挑战第30天】Flutter 框架实现跨平台移动应用,通过一致的 UI 渲染(Skia 引擎)、热重载功能和响应式框架提高开发效率和用户体验。然而,Android 和 iOS 的系统差异、渲染机制及编译过程影响性能。性能对比显示,iOS 可能因硬件优化提供更流畅体验,而 Android 更具灵活性和广泛硬件支持。开发者可采用代码、资源优化和特定平台优化策略,利用性能分析工具提升应用性能。
【Flutter前端技术开发专栏】Flutter在Android与iOS上的性能对比
|
3天前
|
机器学习/深度学习 安全 数据处理
构建未来:基于Android的智能家居控制系统开发
【4月更文挑战第29天】 随着物联网技术的蓬勃发展,智能家居已成为现代技术革新的重要领域。本文将深入探讨基于Android平台的智能家居控制系统的设计和实现,旨在提供一种用户友好、高度集成且功能丰富的解决方案。通过利用Android设备的广泛普及和其强大的处理能力,结合最新的无线通讯技术和人工智能算法,我们旨在打造一个可靠、易用且具有高度可定制性的智能家居控制环境。文中不仅详细阐述了系统架构、关键技术选型以及界面设计,还对可能遇到的安全挑战进行了分析,并提出了相应的解决策略。
|
3天前
|
监控 Java Android开发
安卓应用开发中的内存优化策略
【4月更文挑战第29天】在面对安卓设备多样化的硬件配置时,合理管理应用内存成为提升用户体验的关键。本文深入探讨了安卓应用开发中常见的内存泄漏问题,并提出了一系列针对性的优化策略。通过分析内存分配机制、垃圾回收原理及内存监控工具的使用,揭示了高效内存管理的实践方法。文章旨在为开发者提供一套系统的内存优化解决方案,以实现更流畅、稳定的应用性能。
|
3天前
|
编解码 测试技术 Android开发
安卓应用开发:打造流畅的用户体验
【4月更文挑战第29天】在竞争激烈的应用市场中,一个具有流畅用户体验的安卓应用是吸引和保留用户的关键因素。本文将深入探讨如何通过优化代码、使用高效的架构模式以及利用安卓系统提供的工具来提升应用性能,从而打造出让用户满意的流畅体验。
|
5天前
|
机器学习/深度学习 搜索推荐 Android开发
【专栏】安卓应用开发:构建高效用户界面的实用指南
【4月更文挑战第27天】本文介绍了构建高效安卓用户界面的指南,分为设计原则和技巧两部分。设计原则包括一致性、简洁性和可访问性,强调遵循安卓系统规范,保持界面简洁,考虑不同用户需求。技巧方面,建议合理布局、优化图标和图片、运用动画效果、提供个性化设置及优化性能。随着技术发展,未来安卓应用开发将融合更多智能化和个性化元素,开发者需持续学习新技术,提升用户体验。