【Java 网络编程】TCP 连接 断开 机制 ( 三次握手 | 四次挥手 )

本文涉及的产品
数据传输服务 DTS,数据同步 small 3个月
推荐场景:
数据库上云
数据传输服务 DTS,数据迁移 small 3个月
推荐场景:
MySQL数据库上云
数据传输服务 DTS,数据同步 1个月
简介: 【Java 网络编程】TCP 连接 断开 机制 ( 三次握手 | 四次挥手 )

文章目录

I TCP 连接建立流程 ( 三次握手 )

II SYN 和 ACK 中的随机值

III TCP 连接建关闭流程 ( 四次挥手 )

IV TCP 连接断开的保证

V 四次挥手的必要性



I TCP 连接建立流程 ( 三次握手 )


1. 连接两端点 : 客户端 , 发起连接 ; 服务器端 , 等待客户端的连接 ;


2. 初始状态 : 客户端发起连接 , 服务器端处于被动等待连接状态 ;


3. 客户端发送 SYN 命令 : 客户端发起连接时 , 向服务器端发送 SYN 命令 ;


① 发送命令 : 客户端向服务器端发送 SYN 命令 ( 连接请求命令 ) ;

② SYN 参数 : 该命令会携带一个随机值参数 x , 该命令发送给服务器 ;

4. 服务器端收到 SYN 命令并处理 ( 第一次握手 ) : 服务器端收到 SYN 命令 , 向客户端会送 SYN ACK 命令 ;


① 校验命令 : 服务器端收到客户端发送的 SYN 命令 , 会校验该命令的正确性 ;

② 命令回送 : 如果 SYN 命令校验通过 , 服务器端会送一条 SYN ACK 命令 ;

③ 命令组成 : 该 SYN ACK 指令包含两个指令 , 即 接收到的 SYN 指令 , 和服务器端生成的 ACK 指令 ;

④ SYN 指令处理 : 服务器端收到客户端发送的 SYN 指令 , 该指令有一个随机值 x , 服务器端会送时 , 会将该 x 执行 +1 操作 ; 即会送的参数是 x + 1 ;

⑤ ACK 指令参数 : ACK 指令会自带一个随机值参数 y ;

5. 客户端接收并处理 SYN ACK 命令 ( 第二次握手 ) : 客户端收到服务器端会送的 SYN ACK 命令后 , 会先进行校验 , 将 ACK 中的 y 参数执行自增操作 , 再次将 SYN ( x + 1 ) ACK ( y + 1 ) 命令发送给服务器端 ;


6. 服务器端收到 SYN ACK 命令 ( 第三次握手 ) : 服务器端再次收到客户端的命令 , 校验这两个命令 , 校验通过后 , 连接正式建立 ;


image.png




II SYN 和 ACK 中的随机值


1. 服务器对应多个客户端 : 服务器是需要接收很多客户端的连接 , 那就需要针对不同的客户端进行区分操作 , 这里从客户端发送的随机数有效的将该客户端与其它客户端进行了区别 ;


2. 连接举例 : 客户端 A 向服务器 S 发送 SYN 命令携带了随机参数 X , 客户端 B 向服务器 S 发送 SYN 命令携带参数 Y , X 和 Y 一定不能相同 ;


① 客户端 A 发送 SYN 携带随机数 X , 服务器 S 向客户端 A 回送 X + 1 ;

② 客户端 B 发送 SYN 携带随机数 Y , 服务器 S 向客户端 B 回送 Y + 1 ;

③ 如果服务器 S 回送的指令相同 , 那么连接的可靠性便不能保证了 ;



III TCP 连接建关闭流程 ( 四次挥手 )


1. 客户端和服务器端都可以发起连接关闭的操作 , 这里拿客户端发起关闭连接操作举例 ;


2. 第一次挥手 ( 客户端 -> 服务器端 ) : 客户端当前状态是已连接状态 ( ESTABLISHED ) , 发送 FIN 命令 , 其会携带随机参数 seq = u 的值 ;


SYN 是发起连接的命令 , FIN 是断开连接的命令 ;


3. 第二次挥手 ( 服务器端 -> 客户端 ) : 服务器端当前状态也是已连接状态 ( ESTABLISHED ) , 接收到 FIN 命令后 , 会向客户端会送一条 ACK 命令 , 该 ACK 命令携带参数 ack = u+1 ;


4. 此时的服务器端状态 : 客户端发送请求断开命令后 , 服务器端并不能马上响应断开 , 如果数据还没有传输完 , 服务器端是不能断开的 , 只能等到服务器端剩余数据传输完毕之后 , 服务器端才能第三次挥手 ;


5. 此时的客户端状态 : 客户端接收到服务器端会送的 ACK 命令 ( ack = u + 1 ) , 此时客户端的输出连接就可以断开了 , 客户端不能进行输出操作 , 此时无法向服务器端发送数据了 , 但是客户端的输入功能没有关闭 , 客户端还可以接收服务器端的数据 ;


6. 服务器端操作 : 服务器端有可能还有残留数据没有完全送达客户端 , 此时将剩余数据传输给客户端 , 客户端目前是有接收功能的 ( 没有发送功能 ) , 直到送达之后才会执行下一步操作 ;


TCP 是可靠传输 , 必须保证数据全部正确可靠 , 这个步骤是必须的 ;


7. 第三次挥手 ( 服务器端 -> 客户端 ) : 服务器端将所有数据送出完毕后 , 向客户端发送 FIN 命令 , 表示服务器端想要关闭连接了 ;


8. 第四次挥手 ( 客户端 -> 服务器端 ) : 客户端收到服务器端的 FIN 命令后 , 再次向服务器端会送 ACK 命令 , 表示服务器端可以断开连接了 ;


image.png


第一次第二次挥手是客户端向服务器端申请断开连接 , 客户端发送断开请求命令 , 服务器端会送响应命令 ;

第三次第四次挥手是服务器端向客户端申请断开连接 , 服务器端发送断开请求命令 , 客户端会送响应命令 ;




IV TCP 连接断开的保证


1. 服务器端保证第三次挥手能到达客户端的机制 : 当服务器端向客户端发送 FIN 命令后 ( 第三次挥手 ) , 服务器端会进入等待状态 , 在等待状态中 , 服务器端会以一个间隔周期持续发送 FIN 命令 , 这个间隔是一帧数据发送所需的最长时间 ( SML 默认 30 秒) , 如果超过 30 秒服务器端没有收到客户端会送的 ACK 命令 ( 第四次挥手 ) , 服务器端会再次发送 FIN 命令 ( 多次第三次挥手 ) , 直到收到客户端会送的 ACK 命令 ( 第四次挥手 ) ;


2. 客户端保证第四次挥手能到达服务器端机制 : 如果客户端一直不向服务器端回送 ACK 命令 ( 第四次挥手 ) , 或者 ACK 命令未到达服务器端 , 服务器端会一直向客户端发送 FIN 命令 ( 第三次挥手 ) , 客户端不断的收到 FIN 命令 , 不停地向服务器端发送 ACK 命令 , 直到服务器端收到 ACK 命令 , 停止向客户端发送 FIN 命令 ;




V 四次挥手的必要性


1. 全双工断开 : 四次挥手保证了全双工连接的安全断开 , 全双工指的是客户端既可以接收服务器端的信息 , 也可以像服务器端发送消息 , 半双工只能发送或者接收消息 , 不能同时发送和接收消息 ;


2. 前两次挥手 : 这里的前两次挥手是断开客户端向服务器端发送数据的连接 , 客户端主动发起断开 , 因此其不会再向服务器端写出数据了 , 但是服务器端可能正在传输数据 , 因此这里还需要单独处理客户端接收数据的连接断开的操作 ;


3. 传输剩余数据 : 前两次挥手之后 , 客户端就丧失了向服务器端发送消息的能力 , 但是服务器端还可以向客户端发送消息 ; 利用这个空档 , 客户端需要将剩余的残余数据发送给客户端 , 然后主动发起断开与客户端的发送连接 ;


4. 后两次挥手 : 后两次挥手就是断开服务器端向客户端传输数据的连接 , 因此是服务器端发送断开请求指令 ;


5. 不能是三次挥手 : 第二次和第三次挥手不能合并 , 因为第二次挥手后 , 无法保证服务器端可以马上关闭连接 , 如果服务器端正在向客户端发送数据 , 要确保最后一批数据能完整的送达客户端 , 因此第二次挥手仅能代表客户端向服务器端的连接关闭 , 不能强行关闭服务器端向客户端传输数据的通道 , 需要等待数据传输完毕后 , 才能发起第三次挥手 , 第二次挥手和第三次挥手中间有一定的时间间隔 , 服务器端要利用这个间隔将剩余数据传输完毕 ;


6. 不能是五次挥手 : 目前需要断开两个连接 , 分别是发送和接收两个双工连接 , 每个连接段考只需要发送请求 FIN 指令 和 会送 ACK 指令即可完成 , 四次就可以完成两个连接的断开操作 , 多余的指令没有必要 ;


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
7天前
|
存储 监控 安全
单位网络监控软件:Java 技术驱动的高效网络监管体系构建
在数字化办公时代,构建基于Java技术的单位网络监控软件至关重要。该软件能精准监管单位网络活动,保障信息安全,提升工作效率。通过网络流量监测、访问控制及连接状态监控等模块,实现高效网络监管,确保网络稳定、安全、高效运行。
35 11
|
17天前
|
Java 程序员
深入理解Java异常处理机制
Java的异常处理是编程中的一块基石,它不仅保障了代码的健壮性,还提升了程序的可读性和可维护性。本文将深入浅出地探讨Java异常处理的核心概念、分类、处理策略以及最佳实践,旨在帮助读者建立正确的异常处理观念,提升编程效率和质量。
|
18天前
|
Java 开发者 UED
深入探索Java中的异常处理机制##
本文将带你深入了解Java语言中的异常处理机制,包括异常的分类、异常的捕获与处理、自定义异常的创建以及最佳实践。通过具体实例和代码演示,帮助你更好地理解和运用Java中的异常处理,提高程序的健壮性和可维护性。 ##
42 2
|
18天前
|
Java 开发者
Java中的异常处理机制深度剖析####
本文深入探讨了Java语言中异常处理的重要性、核心机制及其在实际编程中的应用策略,旨在帮助开发者更有效地编写健壮的代码。通过实例分析,揭示了try-catch-finally结构的最佳实践,以及如何利用自定义异常提升程序的可读性和维护性。此外,还简要介绍了Java 7引入的多异常捕获特性,为读者提供了一个全面而实用的异常处理指南。 ####
39 2
|
21天前
|
Java 程序员 UED
深入理解Java中的异常处理机制
本文旨在揭示Java异常处理的奥秘,从基础概念到高级应用,逐步引导读者掌握如何优雅地管理程序中的错误。我们将探讨异常类型、捕获流程,以及如何在代码中有效利用try-catch语句。通过实例分析,我们将展示异常处理在提升代码质量方面的关键作用。
31 3
|
21天前
|
Java 数据库连接 开发者
Java中的异常处理机制:深入解析与最佳实践####
本文旨在为Java开发者提供一份关于异常处理机制的全面指南,从基础概念到高级技巧,涵盖try-catch结构、自定义异常、异常链分析以及最佳实践策略。不同于传统的摘要概述,本文将以一个实际项目案例为线索,逐步揭示如何高效地管理运行时错误,提升代码的健壮性和可维护性。通过对比常见误区与优化方案,读者将获得编写更加健壮Java应用程序的实用知识。 --- ####
|
22天前
|
运维 Java 编译器
Java 异常处理:机制、策略与最佳实践
Java异常处理是确保程序稳定运行的关键。本文介绍Java异常处理的机制,包括异常类层次结构、try-catch-finally语句的使用,并探讨常见策略及最佳实践,帮助开发者有效管理错误和异常情况。
67 4
|
21天前
|
开发框架 安全 Java
Java 反射机制:动态编程的强大利器
Java反射机制允许程序在运行时检查类、接口、字段和方法的信息,并能操作对象。它提供了一种动态编程的方式,使得代码更加灵活,能够适应未知的或变化的需求,是开发框架和库的重要工具。
36 2
|
16天前
|
Java API 开发者
深入理解Java中的异常处理机制
本文探讨了Java编程语言中异常处理的核心概念,包括异常类型、异常捕获与抛出、以及最佳实践。通过分析常见的异常场景和处理策略,旨在帮助开发者更好地理解和运用异常处理机制,提高代码的健壮性和可维护性。文章不仅涵盖了基本的try-catch结构,还深入讨论了自定义异常的创建与使用,以及finally块的重要性和应用。此外,还将介绍一些高级技巧,如多异常捕获和嵌套异常处理,为读者提供全面的技术指导。
67 0
|
23天前
|
Java API 数据库
Java 反射机制:动态编程的 “魔法钥匙”
Java反射机制是允许程序在运行时访问类、方法和字段信息的强大工具,被誉为动态编程的“魔法钥匙”。通过反射,开发者可以创建更加灵活、可扩展的应用程序。
39 0