面试突击 | Redis 如何从海量数据中查询出某一个 Key?视频版

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 面试突击 | Redis 如何从海量数据中查询出某一个 Key?视频版

微信图片_20220117191334.jpg


1 考察知识点


本题考察的知识点有以下几个:


  1. Keys 和 Scan 的区别
  2. Keys 查询的缺点
  3. Scan 如何使用?
  4. Scan 查询的特点


2 解答思路


  1. Keys 查询存在的问题
  2. Scan 的使用
  3. Scan 的特点


3 Keys 使用相关


1)Keys 用法如下


微信图片_20220117191336.png


2)Keys 存在的问题


  1. 此命令没有分页功能,我们只能一次性查询出所有符合条件的 key 值,如果查询结果非常巨大,那么得到的输出信息也会非常多;


  1. keys 命令是遍历查询,因此它的查询时间复杂度是 o(n),所以数据量越大查询时间就越长。


4 Scan 使用相关


我们先来模拟海量数据,使用 Pipeline 添加 10w 条数据,Java 代码实现如下:


import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import utils.JedisUtils;
public class ScanExample {
    public static void main(String[] args) {
        // 添加 10w 条数据
        initData();
    }
    public static void initData(){
        Jedis jedis = JedisUtils.getJedis();
        Pipeline pipe = jedis.pipelined();
        for (int i = 1; i < 100001; i++) {
            pipe.set("user_token_" + i, "id" + i);
        }
        // 执行命令
        pipe.sync();
        System.out.println("数据插入完成");
    }
}


我们来查询用户 id 为 9999* 的数据,Scan 命令使用如下:


127.0.0.1:6379> scan 0 match user_token_9999* count 10000
1) "127064"
2) 1) "user_token_99997"
127.0.0.1:6379> scan 127064 match user_token_9999* count 10000
1) "1740"
2) 1) "user_token_9999"
127.0.0.1:6379> scan 1740 match user_token_9999* count 10000
1) "21298"
2) 1) "user_token_99996"
127.0.0.1:6379> scan 21298 match user_token_9999* count 10000
1) "65382"
2) (empty list or set)
127.0.0.1:6379> scan 65382 match user_token_9999* count 10000
1) "78081"
2) 1) "user_token_99998"
   2) "user_token_99992"
127.0.0.1:6379> scan 78081 match user_token_9999* count 10000
1) "3993"
2) 1) "user_token_99994"
   2) "user_token_99993"
127.0.0.1:6379> scan 3993 match user_token_9999* count 10000
1) "13773"
2) 1) "user_token_99995"
127.0.0.1:6379> scan 13773 match user_token_9999* count 10000
1) "47923"
2) (empty list or set)
127.0.0.1:6379> scan 47923 match user_token_9999* count 10000
1) "59751"
2) 1) "user_token_99990"
   2) "user_token_99991"
   3) "user_token_99999"
127.0.0.1:6379> scan 59751 match user_token_9999* count 10000
1) "0"
2) (empty list or set)


从以上的执行结果,我们看出两个问题:


  1. 查询的结果为空,但游标值不为 0,表示遍历还没结束;


  1. 设置的是 count 10000,但每次返回的数量都不是 10000,且不固定,这是因为 count 只是限定服务器单次遍历的字典槽位数量 (约等于),而不是规定返回结果的 count 值。


相关语法:scan cursor [MATCH pattern] [COUNT count]


其中:


  • cursor:光标位置,整数值,从 0 开始,到 0 结束,查询结果是空,但游标值不为 0,表示遍历还没结束;


  • match pattern:正则匹配字段;


  • count:限定服务器单次遍历的字典槽位数量 (约等于),只是对增量式迭代命令的一种提示 (hint),并不是查询结果返回的最大数量,它的默认值是 10。


5 Scan 代码实战


本文我们使用 Java 代码来实现 Scan 的查询功能,代码如下:


import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.ScanParams;
import redis.clients.jedis.ScanResult;
import utils.JedisUtils;
public class ScanExample {
    public static void main(String[] args) {
        Jedis jedis = JedisUtils.getJedis();
        // 定义 match 和 count 参数
        ScanParams params = new ScanParams();
        params.count(10000);
        params.match("user_token_9999*");
        // 游标
        String cursor = "0";
        while (true) {
            ScanResult<String> res = jedis.scan(cursor, params);
            if (res.getCursor().equals("0")) {
                // 表示最后一条
                break;
            }
            cursor = res.getCursor(); // 设置游标
            for (String item : res.getResult()) {
                // 打印查询结果
                System.out.println("查询结果:" + item);
            }
        }
    }
}


以上程序执行结果如下:


查询结果:user_token_99997

查询结果:user_token_9999

查询结果:user_token_99996

查询结果:user_token_99998

查询结果:user_token_99992

查询结果:user_token_99994

查询结果:user_token_99993

查询结果:user_token_99995

查询结果:user_token_99990

查询结果:user_token_99991

查询结果:user_token_99999


6 总结


通过本文我们了解到,Redis 中如果要在海量的数据数据中,查询某个数据应该使用 Scan,Scan 具有以下特征:


  1. Scan 可以实现 keys 的匹配功能;
  2. Scan 是通过游标进行查询的不会导致 Redis 假死;
  3. Scan 提供了 count 参数,可以规定遍历的数量;
  4. Scan 会把游标返回给客户端,用户客户端继续遍历查询;
  5. Scan 返回的结果可能会有重复数据,需要客户端去重;
  6. 单次返回空值且游标不为 0,说明遍历还没结束;
  7. Scan 可以保证在开始检索之前,被删除的元素一定不会被查询出来;
  8. 在迭代过程中如果有元素被修改, Scan 不保证能查询出相关的元素。


7 视频版


QQ图片20220117191325.png

点击查看原视频链接

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
26天前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
1月前
|
消息中间件 缓存 NoSQL
Redis 高并发竞争 key ,如何解决这个难点?
本文主要探讨 Redis 在高并发场景下的并发竞争 Key 问题,以及较为常用的两种解决方案(分布式锁+时间戳、利用消息队列)。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
Redis 高并发竞争 key ,如何解决这个难点?
|
2月前
|
NoSQL Unix Redis
Redis 键(key)
10月更文挑战第15天
35 1
|
2月前
|
NoSQL Java API
美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴在面试一线互联网企业时遇到了关于Redis分布式锁过期及自动续期的问题。尼恩对此进行了系统化的梳理,介绍了两种核心解决方案:一是通过增加版本号实现乐观锁,二是利用watch dog自动续期机制。后者通过后台线程定期检查锁的状态并在必要时延长锁的过期时间,确保锁不会因超时而意外释放。尼恩还分享了详细的代码实现和原理分析,帮助读者深入理解并掌握这些技术点,以便在面试中自信应对相关问题。更多技术细节和面试准备资料可在尼恩的技术文章和《尼恩Java面试宝典》中获取。
美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?
|
2月前
|
缓存 监控 负载均衡
如何解决Redis热点Key问题?技术干货分享
【10月更文挑战第2天】在Redis的使用过程中,热点Key问题是一个常见的性能瓶颈。热点Key指的是那些被频繁访问的Key,它们可能导致Redis服务器的负载不均衡,进而影响整体性能。本文将深入探讨热点Key问题的成因、影响以及多种解决方案,帮助读者在实际工作中有效应对这一挑战。
98 3
|
2月前
|
NoSQL 算法 Redis
Redis面试篇
Redis面试篇
48 5
|
2月前
|
缓存 NoSQL Java
Java中redis面试题
Java中redis面试题
46 1
|
1月前
|
存储 NoSQL Redis
Redis常见面试题:ZSet底层数据结构,SDS、压缩列表ZipList、跳表SkipList
String类型底层数据结构,List类型全面解析,ZSet底层数据结构;简单动态字符串SDS、压缩列表ZipList、哈希表、跳表SkipList、整数数组IntSet
|
2月前
|
缓存 NoSQL 算法
面试题:Redis如何实现分布式锁!
面试题:Redis如何实现分布式锁!
|
2月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
78 6