基于Adaboost的人脸检测算法

简介: 基于Adaboost的人脸检测算法

AdaBoost算法是一种自适应的Boosting算法,基本思想是选取若干弱分类器,组合成强分类器。根据人脸的灰度分布特征,AdaBoost选用了Haar特征[38]。AdaBoost分类器的构造过程如图2-4所示。

图2-4  Adaboost分类器的构造过程


1)Haar-like矩形特征

Haar-like矩形特征是根据图像的区域灰度对比特性进行设计的,常用的Haar-like特征[39]如图2-5所示,Haar-like特征值定义为白色区域像素值之和与黑色区域像素值之和的差值。

常用的Haar-like矩形特征

一幅图像中Haar-like矩形特征的个数非常多,对于一个大小的窗口,就包含大约16万个矩形特征,计算量非常大。为提高运算速度,Viola等[17]将积分图应用于Haar-like特征值的计算。对于一幅图像,点处的积分图像值定义为该点左上方所有点的像素值之和,即:

                                       

其中表示积分图像在点处的积分图像值,表示原图像在点处的像素值。通过对原图像的一次遍历即可完成积分图像的初始化。完成积分图像初始化后,对矩形区域内像素值之和的计算变得非常简单:一个矩形内的像素值之和可以由构成该矩形的四个点来确定。对于图2-6所示的图像,若要计算区域的像素值之和,可用式()得到:

                             

2)弱分类器

对于一个“是”或“否”问题,随机猜测,正确的概率为50%。而如果有一个分类器的分类精度稍大于50%,则称之为弱分类器。在Adaboost算法中,弱分类器由Haar-like矩形特征生成,构造方法如下:

                         

其中是弱分类器,是矩形特征,是阈值,控制不等号的方向,取值为,将检测样本的特征值与阈值进行比较,为1表示人脸,0表示“非人脸”。


3)强分类器

将若干个弱分类器进行组合构造分类能力更好的强分类器。矩形特征很多,因此会构造大量弱分类器,从中选取分类效果最好的若干个弱分类器,同时将有效特征进行提升,构造强分类器[40][41][42]。

假设要选取个弱分类器来构造强分类器,现有个训练样本,其中人脸样本有个,非人脸样本有个,样本表示为,代表样本图像,当属于人脸时,,否则。构造强分类器的具体步骤如下:

(1)对训练样本的权值进行初始化:

                               

其中代表第零次迭代,第个样本的权值。

(2)循环迭代,迭代次数,对于第次迭代,操作如下:

(a)、对权值进行归一化,使服从概率分布: 。

(b)、对所有弱分类器进行一次遍历,计算每个弱分类器对所有训练样本的误差之和,计算公式为:

                               

其中代表第个弱分类器的误差,代表第个训练样本在第次迭代的权值,表示第个弱分类器对第个样本的判别值。

(c)、从所有弱分类器中选出误差最小者作为本次迭代的最优弱分类器,记为,其引起的总误差为。

(d)、对训练样本的权值进行更新,公式为:

                                       

其中,的取值规则为:当被正确分类时,,否则。

(e)、若,令,进入下一次迭代。

(3)结束循环,得到强分类器:

                 

其中,。表示人脸,表示非人脸。


4)级联强分类器

通常情况下,大部分待检测的“非人脸”窗口与人脸差别很大,可以用很少的特征进行分类;而少数与人脸差异不大的待检窗口应该用更多的特征来区分,基于这一事实,AdaBoost引入了级联强分类器[40][42],如图2-7所示,将多个强分类器串联起来,强分类器一级比一级严格。前面的分类器由比较重要的特征构成,要求能够快速的排除大部分的“非人脸”窗口,后面的分类器一般比较复杂,用来区分少数与人脸相似的待检窗口。每一级强分类器遵循的原则是:在保证人脸图像通过率的前提下,尽可能多的排除“非人脸”。


由实验结果可知,Adaboost检测算法引起了误检和漏检的情况:人脸姿态发生变化时会造成漏检,可以通过训练人脸在不同姿态下的分类器来解决;当图像中存在与人脸的灰度分布情况类似的区域时,会造成误检,如图2-8中的人脸雕塑,由于雕塑是三维的,在外界光照的影响下,雕塑的二维图像中人脸区域的灰度分布与真实人脸的灰度分布相似,因此造成误检测,此外,当背景中某个区域的灰度分布与人脸灰度分布相似时,也会造成误检测。

相关文章
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。
|
2月前
|
算法 安全
分别使用OVP-UVP和OFP-UFP算法以及AFD检测算法实现反孤岛检测simulink建模与仿真
本课题通过Simulink建模与仿真,实现OVP-UVP、OFP-UFP算法及AFD检测算法的反孤岛检测。OVP-UVP基于电压幅值变化,OFP-UFP基于频率变化,而AFD则通过注入频率偏移信号来检测孤岛效应,确保电力系统安全稳定运行。系统使用MATLAB 2013b进行建模与仿真验证。
|
29天前
|
存储 JSON 算法
TDengine 检测数据最佳压缩算法工具,助你一键找出最优压缩方案
在使用 TDengine 存储时序数据时,压缩数据以节省磁盘空间是至关重要的。TDengine 支持用户根据自身数据特性灵活指定压缩算法,从而实现更高效的存储。然而,如何选择最合适的压缩算法,才能最大限度地降低存储开销?为了解决这一问题,我们特别推出了一个实用工具,帮助用户快速判断并选择最适合其数据特征的压缩算法。
35 0
|
2月前
|
算法 计算机视觉 Python
圆形检测算法-基于颜色和形状(opencv)
该代码实现了一个圆检测算法,用于识别视频中的红色、白色和蓝色圆形。通过将图像从RGB转换为HSV颜色空间,并设置对应颜色的阈值范围,提取出目标颜色的区域。接着对这些区域进行轮廓提取和面积筛选,使用霍夫圆变换检测圆形,并在原图上绘制检测结果。
82 0
|
4月前
|
机器学习/深度学习 监控 算法
目标检测算法技术
8月更文挑战第11天
|
4月前
|
机器学习/深度学习 监控 算法
目标检测算法
8月更文挑战第5天
|
4月前
|
机器学习/深度学习 监控 算法
目标检测算法
8月更文挑战第8天
|
5月前
|
监控 算法 自动驾驶
目标检测算法:从理论到实践的深度探索
【7月更文第18天】目标检测,作为计算机视觉领域的核心任务之一,旨在识别图像或视频中特定对象的位置及其类别。这一技术在自动驾驶、视频监控、医疗影像分析等多个领域发挥着至关重要的作用。本文将深入浅出地介绍目标检测的基本概念、主流算法,并通过一个实际的代码示例,带您领略YOLOv5这一高效目标检测模型的魅力。
652 11
|
5月前
|
机器学习/深度学习 人工智能 监控
人工智能 - 目标检测算法详解及实战
目标检测需识别目标类别与位置,核心挑战为复杂背景下的多目标精准快速检测。算法分两步:目标提取(滑动窗口或区域提议)和分类(常用CNN)。IoU衡量预测与真实框重叠度,越接近1,检测越准。主流算法包括R-CNN系列(R-CNN, Fast R-CNN, Faster R-CNN),YOLO系列,SSD,各具特色,如Faster R-CNN高效候选区生成与检测,YOLO适用于实时应用。应用场景丰富,如自动驾驶行人车辆检测,安防监控,智能零售商品识别等。实现涉及数据准备、模型训练(示例YOLOv3)、评估(Precision, Recall, mAP)及测试。
150 5
下一篇
无影云桌面