GNN入门必看!Google Research教你如何从毛坯开始搭建sota 图神经网络(下)

简介: 图神经网络近几年的发展十分火热,主要原因还是图能够表示连通关系,例如知识图谱等更贴切现实应用!Google Research最近发了一篇博客,从零开始教学GNN的发展路程,不熟悉的同学可以查缺补漏啦!

与神经网络模块或层一样,我们可以将这些GNN层堆叠在一起。

 

由于GNN不会更新输入图的连通性,因此可以使用与输入图相同的邻接列表和相同数量的特征向量来描述GNN的输出图。

 

构建了一个简单的GNN后,下一步就是考虑如何在上面描述的任务中进行预测。

 

首先考虑二分类的情况,这个框架也可以很容易地扩展到多分类或回归情况。如果任务是在图节点上进行二分类预测,并且图已经包含节点信息,那么对于每个节点embedding应用线性分类器即可。

28.jpg

实际情况可能更复杂,例如图形中的信息可能存储在边中,而且节点中没有信息,但仍然需要对节点进行预测。所以就需要一种从边收集信息并将其提供给节点进行预测的方法。

 

可以通过Pooling来实现这一点。Pooling分两步进行:对于要池化的每个item,收集它们的每个embedding并将它们连接到一个矩阵中,通常通过求和操作聚合收集的embedding。

29.jpg

更复杂地,可以通过在 GNN 层内使用池化来进行更复杂的预测,以使学习到的embedding更了解图的连通性。可以使用消息传递(Message Passing)来做到这一点,其中相邻节点或边缘交换信息并影响彼此更新的embedding。

 

消息传递包含三个步骤:

1、对于图中的每个节点,收集所有相邻节点embedding(或消息)。

2、通过聚合函数(如sum)聚合所有消息。

3、所有汇集的消息都通过一个更新函数传递,通常是一个学习的神经网络。

 

这些步骤是利用图的连接性的关键,还可以在GNN层中构建更复杂的消息传递变体,以产生更高表达能力的GNN模型。

 

30.jpg本质上,消息传递和卷积是聚合和处理元素的邻居信息以更新元素值的操作。在图中,元素是节点,在图像中,元素是像素。然而,图中相邻节点的数量可以是可变的,这与图像中每个像素都有一定数量的相邻元素不同。通过将传递给GNN层的消息堆叠在一起,节点最终可以合并整个图形中的信息

31.jpg节点学习完embedding后的下一步就是边。在真实场景中,数据集并不总是包含所有类型的信息(节点、边缘和全局上下文),当用户想要对节点进行预测,但提供的数据集只有边信息时,在上面展示了如何使用池将信息从边路由到节点,但也仅局限在模型的最后一步预测中。除此之外,还可以使用消息传递在GNN层内的节点和边之间共享信息。

 

可以采用与之前使用相邻节点信息相同的方式合并来自相邻边缘的信息,首先合并边缘信息,使用更新函数对其进行转换并存储。

 

但存储在图中的节点和边信息不一定具有相同的大小或形状,因此目前还没有一种明确有效的方法来组合他们,一种比较好的方法是学习从边空间到节点空间的线性映射,反之亦然。或者,可以在update函数之前将它们concatenate在一起。

 

32.jpg
最后一步就是获取全局的节点、边表示。

 

之前所描述的网络存在一个缺陷:即使多次应用消息传递,在图中彼此不直接连接的节点可能永远无法有效地将信息传递给彼此。对于一个节点,如果有k层网络,那么信息最多传播k步。

 

对于预测任务依赖于相距很远的节点或节点组的情况,这可能是一个问题。一种解决方案是让所有节点都能够相互传递信息。但不幸的是,对于大型的图来说,所需要的计算成本相当高,但在小图形中已经可以有所应用。

 

这个问题的一个解决方案是使用图(U)的全局表示,它有时被称为主节点或上下文向量。该全局上下文向量连接到网络中的所有其他节点和边,并可以作为它们之间传递信息的桥梁,为整个图形建立表示。这可以创建一个比其他方法更丰富、更复杂的图形表示。


33.jpg从这方面来看,所有的图形的属性都已经学习到了对应的表示,因此可以通过调整感兴趣的属性相对于其余属性的信息在池中利用它们。例如对于一个节点,可以考虑来自相邻节点、连接边和全局信息的信息。为了将新节点嵌入到所有这些可能的信息源上,还可以简单地将它们连接起来。此外,还可以通过线性映射将它们映射到同一空间,并应用特征调节层(feature-wise modulation layer)。34.jpg

通过上述流程,相信大家已经对简单的GNN如何发展为sota模型有了了解。在获取图的节点、边表示后,就可以为之后的任务再单独设计网络,GNN为神经网络提供了一种处理图数据的方式。

 

在原文博客中,还包括一些GNN的真实案例和数据集,并了解GNN在其中的具体作用,想了解更多内容可以访问参考链接进行阅读。



相关文章
|
4天前
|
JSON Dart 前端开发
鸿蒙应用开发从入门到入行 - 篇7:http网络请求
在本篇文章里,您将掌握鸿蒙开发工具DevEco的基本使用、ArkUI里的基础组件,并通过制作一个简单界面掌握使用
37 8
|
26天前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
70 3
图卷积网络入门:数学基础与架构设计
|
16天前
|
Web App开发 网络协议 安全
网络编程懒人入门(十六):手把手教你使用网络编程抓包神器Wireshark
Wireshark是一款开源和跨平台的抓包工具。它通过调用操作系统底层的API,直接捕获网卡上的数据包,因此捕获的数据包详细、功能强大。但Wireshark本身稍显复杂,本文将以用抓包实例,手把手带你一步步用好Wireshark,并真正理解抓到的数据包的各项含义。
68 2
|
23天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
60 3
|
1月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
1月前
|
消息中间件 编解码 网络协议
Netty从入门到精通:高性能网络编程的进阶之路
【11月更文挑战第17天】Netty是一个基于Java NIO(Non-blocking I/O)的高性能、异步事件驱动的网络应用框架。使用Netty,开发者可以快速、高效地开发可扩展的网络服务器和客户端程序。本文将带您从Netty的背景、业务场景、功能点、解决问题的关键、底层原理实现,到编写一个详细的Java示例,全面了解Netty,帮助您从入门到精通。
155 0
|
1月前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
136 1
|
2月前
|
弹性计算 人工智能 运维
Terraform从入门到实践:快速构建你的第一张业务网络(上)
本次分享主题为《Terraform从入门到实践:快速构建你的第一张业务网络》。首先介绍如何入门和实践Terraform,随后演示如何使用Terraform快速构建业务网络。内容涵盖云上运维挑战及IaC解决方案,并重磅发布Terraform Explorer产品,旨在降低使用门槛并提升用户体验。此外,还将分享Terraform在实际生产中的最佳实践,帮助解决云上运维难题。
176 1
Terraform从入门到实践:快速构建你的第一张业务网络(上)
|
2月前
|
Java
[Java]Socket套接字(网络编程入门)
本文介绍了基于Java Socket实现的一对一和多对多聊天模式。一对一模式通过Server和Client类实现简单的消息收发;多对多模式则通过Server类维护客户端集合,并使用多线程实现实时消息广播。文章旨在帮助读者理解Socket的基本原理和应用。
34 1

热门文章

最新文章