3.两层简介
MAC(Media Access Control),即媒体访问控制子层协议,该部分有两个概念:MAC可以是一个硬件控制器以及MAC通讯协议。该协议位于OSI七层协议中数据链路层的下半部分,主要是负责控制与连接物理层的物理介质。
发送数据:MAC协议可以事先判断是否可以发送数据,如果可以发送将数据加上一些控制信息,最后将数据以及控制信息以规定的格式发送到物理层
接收数据:MAC协议首先判断输入的信息并是否发生传输错误,如果没有错误,则去掉控制信息后发送至LLC(逻辑链路控制)层。
PHY物理层位于OSI最底层,物理层协议定义电气信号、线的状态、时钟要求、数据编码和数据传输用的连接器。
MDI口是快速以太网100BASE-T定义的与介质有关接口(Media Dependent Interface)。MDI是指通过收发器发送的100BASE-T信号,即100BASE-TX、FX、T4或T2信号。将集线器连接网络接口卡时,其发送和接收对通常是相互连接的。集线器之间连接时,通常需要一条跨接电缆,其中的发送和接收对是反接的。MDI是正常的UTP或STP连接,而MDI-X连接器的发送和接收对是在内部反接的,这就使得不同的设备(如集线器-集线器或集电器-交换机),可以利用常规的UTP或STP电缆实现背靠背的级联。”
4.总结
MAC 就是以太网控制器,属于OSI的数字链路层。 phy 属于OSI的物理层(Physical layer),所以叫phy。
MAC主要处理的数字信号
PHY负责把MAC的数字信号进行编码,串行化等操作后,转化为模拟信号进行发送。PHY在数据接受时,进行如上所述的逆操作,将模拟信号转化为数字信号,解码,并行化后,传给MAC。
基础以太网物理层非常简单:它是一种物理层收发器(发射器和接收器),能将一个设备物理地连接到另一个设备。这种物理连接可以是铜线(例如CAT5电缆——一种家庭使用的蓝色插线电缆)或光纤电缆。
问:造成以太网MAC和PHY单片整合难度高的原因是什么?
答:PHY整合了大量模拟硬件,而MAC是典型的全数字器件。芯片面积及模拟/数字混合架构是为什么先将MAC集成进微控制器而将PHY留在片外的原因。更灵活、密度更高的芯片技术已经可以实现MAC和PHY的单芯片整合。