Java并发编程基础盘点2-单例模式

简介: Java并发编程基础盘点2-单例模式

单例模式是一种常见的设计模式,在这个模式下,单例对象的类必须保证只有一个实例存在,并提供返回实例对象的方法。在日常工作中,线程池、缓存、日志等对象通常被设计成单例模式,一方面减少了频繁创建销毁对象用以提升性能,另一方面避免了对共享资源的多重占用并简化了访问。

那么在高并发、多线程的环境下,是如何确保多个线程操作的是同一对象,也就是说保证对象的唯一性呢?这时就要用到单例模式,来确保实例化过程中,对象只被实例化了一次。本文将介绍一下单例模式的几种实现方式及性能分析。

1.饿汉模式

饿汉模式比较简单,在实例初始化的时候不管有没有用到,都会把实例先创建好,等待被调用。

public class HungrySingleton {
    private static HungrySingleton instance=new HungrySingleton();
    private HungrySingleton(){}
    //返回实例对象
    public static HungrySingleton getInstance(){
        return instance;
    }
}

由于在加载的时候已经被实例化,只会创建一个实例,因此饿汉模式是线程安全的,能够充分保证单例。但是没有实现延迟加载,可能很长时间不被使用,影响程序性能。

2.懒汉模式:

懒汉模式就是实例在被用到的时候才去创建,在使用的同时去检查有没有实例,如果有则返回,没有则新建。

public class HoonSingleton {
    private static HoonSingleton instance = null;
    public HoonSingleton() {
    }
    public HoonSingleton getInstance() {
        if (instance == null) {
            instance = new HoonSingleton();
        }
        return instance;
    }
}

可以看出,在懒汉模式中,单例实例会被延迟加载,即只有在真正使用的时候才会实例化一个对象并交给自己的引用。由于使用了懒加载,因此在性能上要优于饿汉模式。

但是在多线程环境下,这种方法并不能够保证实例对象的唯一性,多线程时可能多个线程同时去实例化对象,因此不能保证线程的安全性。在此基础上进行改进,通过在getInstance()方法上加synchronized关键字,实现同步,可以实现线程安全。

public synchronized static HoonSingleton getInstance() {
    if (instance == null) {
        instance = new HoonSingleton();
    }
    return instance;
}

通过使用synchronized保证了对临界资源的同步互斥访问,也就保证了单例同步方法,这一方式实现了线程安全,但是相应的该方法退化到了串行执行,并且同步方法的作用域比较大,锁的粒度太大,一定程度上降低了程序运行效率。

3.DCL模式(Double Check Locking)

DCL模式又称为双检锁,也叫双重校验锁,综合了懒汉式和饿汉式两者的优点整合而成。

public class DCL {
    private static DCL instance=null;
    private DCL(){
    }
    public static DCL getInstance(){
        if(null==instance)
            synchronized (DCL.class){
                if(null==instance)
                    instance=new DCL();
            }
        return instance;
    }
}

DCL中,在synchronized关键字内外都加了一层 if 条件判断,这样既保证了线程安全,又比直接上锁提高了执行效率,还节省了内存空间。因此,在实现了懒加载与保证线程安全性的同时,也保证了较好的性能。

尽管DCL看起来已经非常完善了,但是由于存在JVM指令重排序的存在(不清楚的可以查看上一篇文章),使得DCL仍然存在一些问题。

instance=new DCL();

尽管是很简单的一个语句,但是从执行上来看,这并不是一个原子操作。这一语句大概完成了三件事情:

给instance实例分配内存;

使用instance的构造方法实例对象;

将instance对象指向分配的内存空间,必须注意,到此为止instance返回就已经是非null的对象了。

在此情况下,JVM为了优化指令提高程序运行效率,可能会将执行顺序中的第2、3步颠倒一下。以2个线程为例,可能出现以下情况:

1. 线程1,发现对象未实例化,准备开始执行构造方法实例对象;

1. 线程2调用instance实例,发现对象已经不为null,直接返回对象;

1. 对象构造方法未执行完毕,线程2调用instance中的一些对象返回空指针异常。

根据以上分析可知,解决这个问题可以通过加volatile关键字来确定指令执行顺序,避免指令重排序

private volatile static DCL instance=null;

4.Holder模式

Holder模式也被称为静态内部类模式,在该模式下,可以通过使用内部静态类来以懒汉模式的思想来实现线程安全的对象单例。

public class HolderDemo {
    private HolderDemo() {}
    private static class Holder {
        private static HolderDemo instance = new HolderDemo();
    }
    public static HolderDemo getInstance() {
        return Holder.instance;
    }
}

可以看出,在声明类的时候,它的成员中不包含需要声明的实例变量,而放到它的内部静态类中去创建实例。而静态的成员式内部类,该内部类的实例与外部类的实例没有绑定关系,只有被调用到时才会装载,这样一来也实现了懒加载。

5.枚举方式

枚举实现方式是在Effective Java一书中被提到的,具有功能完善使用简单,无偿地提供了序列化机制,在面对复杂的序列化或者反射攻击时仍然可以绝对防止多次实例化等优点。

public class EnumSingletonDemo {
    private EnumSingletonDemo() {
    }
    private enum EnumHolder {
        INSTANCE;
        private EnumSingletonDemo instance;
        EnumHolder(){
            instance = new EnumSingletonDemo();
        }
    }
    public static EnumSingletonDemo getInstance() {
        return EnumHolder.INSTANCE.instance;
    }
}

由于Java中规定了每个枚举类型及其定义的枚举变量在JVM中都是唯一的,所以在加载的过程中只能被实例化一次,所以在其初始化的过程中是线程安全的。

在序列化方面,Java中枚举的序列化和反序列化都做了特殊的规定,这就可以避免反序列化过程中由于反射而导致的单例被破坏问题。使用枚举的方式,能够有效防止使用反射强行调用构造方法创建实例。

小结:

本文介绍了单例模式的主要思想,并列举出了它的几种经典实现,并对几种实现的线程安全性与执行效率进行了分析。总的来说,可以按照以下规则进行实现方式的选择:

减少使用懒汉模式,线程安全或不安全模式下均有一定缺陷

如果设计序列化与反序列化时,可以选择枚举的方式

如果要实现懒加载,可以使用DCL及Holder模式

未声明需要懒加载,可以选择饿汉模式

相关文章
|
3天前
|
安全 Java API
JAVA并发编程JUC包之CAS原理
在JDK 1.5之后,Java API引入了`java.util.concurrent`包(简称JUC包),提供了多种并发工具类,如原子类`AtomicXX`、线程池`Executors`、信号量`Semaphore`、阻塞队列等。这些工具类简化了并发编程的复杂度。原子类`Atomic`尤其重要,它提供了线程安全的变量更新方法,支持整型、长整型、布尔型、数组及对象属性的原子修改。结合`volatile`关键字,可以实现多线程环境下共享变量的安全修改。
|
1天前
|
Java
JAVA并发编程系列(7)Semaphore信号量剖析
腾讯T2面试,要求在3分钟内用不超过20行代码模拟地铁安检进站过程。题目设定10个安检口,100人排队,每人安检需5秒。实际中,这种题目主要考察并发编程能力,特别是多个线程如何共享有限资源。今天我们使用信号量(Semaphore)实现,限制同时进站的人数,并通过信号量控制排队和进站流程。并详细剖析信号量核心原理和源码。
|
2天前
|
存储 Java
JAVA并发编程AQS原理剖析
很多小朋友面试时候,面试官考察并发编程部分,都会被问:说一下AQS原理。面对并发编程基础和面试经验,专栏采用通俗简洁无废话无八股文方式,已陆续梳理分享了《一文看懂全部锁机制》、《JUC包之CAS原理》、《volatile核心原理》、《synchronized全能王的原理》,希望可以帮到大家巩固相关核心技术原理。今天我们聊聊AQS....
|
2天前
|
Java 程序员 数据库连接
Java编程中的异常处理:从基础到进阶
【9月更文挑战第18天】在Java的世界里,异常处理是每个程序员必须面对的挑战。本文将带你从异常的基本概念出发,通过实际的代码示例,深入探讨如何有效地管理和处理异常。我们将一起学习如何使用try-catch块来捕捉异常,理解finally块的重要性,以及如何自定义异常类来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的见解和技巧,让你的Java代码更加健壮和可靠。
|
2天前
|
Java 数据库连接 UED
掌握Java编程中的异常处理
【9月更文挑战第18天】在Java的世界中,异常是那些不请自来的客人,它们可能在任何时候突然造访。本文将带你走进Java的异常处理机制,学习如何优雅地应对这些突如其来的“访客”。从基本的try-catch语句到更复杂的自定义异常,我们将一步步深入,确保你能够在面对异常时,不仅能够从容应对,还能从中学到宝贵的经验。让我们一起探索如何在Java代码中实现健壮的异常处理策略,保证程序的稳定运行。
|
3天前
|
Java 数据库
JAVA并发编程-一文看懂全部锁机制
曾几何时,面试官问:java都有哪些锁?小白,一脸无辜:用过的有synchronized,其他不清楚。面试官:回去等通知! 今天我们庖丁解牛说说,各种锁有什么区别、什么场景可以用,通俗直白的分析,让小白再也不怕面试官八股文拷打。
|
3天前
|
Java
深入理解Java中的多线程编程
本文将探讨Java多线程编程的核心概念和技术,包括线程的创建与管理、同步机制以及并发工具类的应用。我们将通过实例分析,帮助读者更好地理解和应用Java多线程编程,提高程序的性能和响应能力。
15 4
|
2天前
|
安全 Java 调度
Java 并发编程中的线程安全和性能优化
本文将深入探讨Java并发编程中的关键概念,包括线程安全、同步机制以及性能优化。我们将从基础入手,逐步解析高级技术,并通过实例展示如何在实际开发中应用这些知识。阅读完本文后,读者将对如何在多线程环境中编写高效且安全的Java代码有一个全面的了解。
|
2天前
|
Java
JAVA并发编程ReentrantLock核心原理剖析
本文介绍了Java并发编程中ReentrantLock的重要性和优势,详细解析了其原理及源码实现。ReentrantLock作为一种可重入锁,弥补了synchronized的不足,如支持公平锁与非公平锁、响应中断等。文章通过源码分析,展示了ReentrantLock如何基于AQS实现公平锁和非公平锁,并解释了两者的具体实现过程。
|
2天前
|
Kubernetes Cloud Native Java
探索未来编程新纪元:Quarkus带你秒建高性能Kubernetes原生Java应用,云原生时代的技术狂欢!
Quarkus 是专为 Kubernetes 设计的全栈云原生 Java 框架,凭借其轻量级、快速启动及高效执行特性,在 Java 社区脱颖而出。通过编译时优化与原生镜像支持,Quarkus 提升了应用性能,同时保持了 Java 的熟悉度与灵活性。本文将指导你从创建项目、编写 REST 控制器到构建与部署 Kubernetes 原生镜像的全过程,让你快速上手 Quarkus,体验高效开发与部署的乐趣。
9 0