用python编写nmap扫描工具--多线程版

简介: 前面学过了python中多线程的使用,也学了通过socket模块,去扫描服务器某个端口是否有开放。服务器的端口范围为0~65535,如果要针对所有的端口都进行扫描的话,耗时较长。假设每一个端口扫描的超时时长设置为0.5s,那么扫描完所有端口需要的时间为:65535*0.5≈9h 。因此,扫描的脚本需要进行优化,可以考虑使用多线程的方式去执行。

前置条件:

用Python代码编写一个简单的nmap扫描工具

Python中多线程的基本操作

前面学过了python中多线程的使用,也学了通过socket模块,去扫描服务器某个端口是否有开放。服务器的端口范围为0~65535,如果要针对所有的端口都进行扫描的话,耗时较长。假设每一个端口扫描的超时时长设置为0.5s,那么扫描完所有端口需要的时间为:65535*0.5≈9h 。因此,扫描的脚本需要进行优化,可以考虑使用多线程的方式去执行。

优化前的脚本:

def scan_port(host,port):
    sk = socket.socket()
    sk.settimeout(0.5)
    conn_result = sk.connect_ex((host, port))
    if conn_result == 0:
        print(f'服务器{host}的{port}端口已开放')
    sk.close()

加入多线程之后的脚本:

import socket
import threading
import time
def scan_port(host,port):
    sk = socket.socket()
    sk.settimeout(0.5)
    conn_result = sk.connect_ex((host, port))
    if conn_result == 0:
        print(f'服务器{host}的{port}端口已开放')
    sk.close()
# 8.129.162.225
start_time = time.time()
host = input('请输入服务器ip地址:')
thread_list = []
for port in range(0, 65536):
    t = threading.Thread(target=scan_port, args=(host, port))
    thread_list.append(t)
for thread in thread_list:
    thread.start()
for thread in thread_list:
    thread.join()
end_time = time.time()
print(f'耗时:{end_time-start_time}')

脚本优化效果:

1、扫描本地开放端口,大概十多秒可以完成


脚本存在的问题:

1、脚本中批量一次创建65536个线程,部分电脑不一定能扛得住

2、扫描出的结果不准确,尤其是在扫描远程服务器的时候,效果更明显,更容易看出问题


学习交流或者文章催更,可加微信xiaobotester,添加的时候注明来意。


相关文章
|
2月前
|
JavaScript 前端开发 Android开发
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
100 13
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
7天前
|
存储 监控 算法
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
39 7
|
3月前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
143 61
Python装饰器实战:打造高效性能计时工具
|
2月前
|
JavaScript 搜索推荐 Android开发
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
84 8
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
|
2月前
|
数据采集 JavaScript Android开发
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
86 7
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
3月前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
275 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
2月前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
83 20
|
2月前
|
数据采集 Java 数据处理
Python实用技巧:轻松驾驭多线程与多进程,加速任务执行
在Python编程中,多线程和多进程是提升程序效率的关键工具。多线程适用于I/O密集型任务,如文件读写、网络请求;多进程则适合CPU密集型任务,如科学计算、图像处理。本文详细介绍这两种并发编程方式的基本用法及应用场景,并通过实例代码展示如何使用threading、multiprocessing模块及线程池、进程池来优化程序性能。结合实际案例,帮助读者掌握并发编程技巧,提高程序执行速度和资源利用率。
70 0
|
安全 测试技术 Python
用Python代码编写一个简单的nmap扫描工具
今天我们用python的模拟实现一个简单版本的端口扫描工具,主要使用到socket模块,socket模块中提供了connect()和connect_ex()两个方法,其中connect_ex()方法有返回值,返回值是一个int类型的数字,标记是否连接成功,0为连接成功,其他数字表示有异常。
|
1月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。

热门文章

最新文章