开发人员亲自上场:Julia语言搞机器学习和Python 比,哪个好用?

简介: 开发人员亲自上场:Julia语言搞机器学习和Python 比,哪个好用?


前几年就流传着这样一种说法:Julia 会替代 Python,成为新的最受欢迎的编程语言之一。我们暂且对这种说法持观望态度,但作为科学计算方面的强大工具,Julia 优势已然显现,这意味着程序员的选择又多了一种。

在数据科学、人工智能等领域,仔细对比 Julia 和 Python,我们会发现:相同的任务,只要 Python 能实现的的,Julia 都可以做,而且效率高得多,语法也简洁优雅,只是在传播度上,名气还不如 Python。

近日,reddit 上的一则热帖引来广大网友的讨论,这个帖子提到,最近,一些 Julia 语言包的开发人员讨论了 Julia 中 ML 的当前状态,并将其状态与 Python ML 生态系统进行了比较。

image.png


原贴地址:https://www.reddit.com/r/MachineLearning/comments/s1zj44/r_julia_developers_discuss_the_current_state_of/

来自乌得勒支大学的  JordiBolibar 认为,「 Julia 确实在机器学习方面拥有巨大的潜力,但它目前的状态有点喜忧参半。更具体地说,我在 SciML  中坚持使用 Julia 的主要原因是,DifferentialEquations.jl 库工作得非常好,但在 Python  中没有发现任何类似的东西。然而,对于我的研究来说,真正痛苦的是 AD 部分。自从我开始使用 Julia ,我在 Zygote  中遇到了两个错误,这使我的工作速度减慢了几个月。但我仍然认为 Julia 是 SciML  的最佳选择,但这些库(及其文档)应该优化的更加用户友好。」

image.png


网友  @jgreener64 表示:「Julia 中的 ML 在某些领域应用非常强大,Julia 一切皆有可能。Julia 面临的问题是:Julia  中的 ML 需要大量现有知识或大量时间搜索 / 反复试验。在个人层面上,我目前正在用 Julia 开发新颖的可微分算法。」

image.png


除了网友的热烈讨论外,Julia  软件包开发人员 Christopher Rackauckas 围绕以下 7 个问题,解答了网友比较关心的内容。Rackauckas 是 MIT  和马里兰大学的数学家和药理学家,主要用 Julia 进行编程。Rackauckas 为  Julia、数学和随机生物学开了专门博客,来介绍相关内容,并且 Rackauckas 在 Julia  中开发了一些库,包括(但不限于)DifferentialEquations.jl 和 Pumas。

image.png

Christopher Rackauckas

问题包括:

  1. 今天 Julia 中的 ML 在哪些地方真正大放异彩?在不久的将来该生态系统在哪些方面优于其他流行的 ML 框架(例如 PyTorch、Flax 等),为什么?
  2. 目前 Julia 的 ML 生态系统在功能或性能方面存在哪些缺点?Julia 在这些领域变得具有竞争力的时间节点在哪?
  3. Julia 的标准 ML 包(例如深度学习) 在性能方面与流行的替代方案相比如何(更快、更慢、相同数量级)?
  4. 有没有重要的 Julia 实验,可以针对流行的 ML 替代方案进行基准测试?
  5. 如果一家公司或机构正在考虑创建职位来为 Julia 的 ML 生态系统做出贡献,有没有最佳案例?为什么他们应该这样做?哪些贡献最有影响力?
  6. 为什么与其他框架合作的独立开发人员应该考虑为 Julia 的 ML 生态系统做出贡献?
  7. 对于某些特定任务,Julia 开发人员倾向于使用哪些软件包?Julia 开发人员希望添加目前不存在的哪些内容?


下文中我们挑选了几个大家比较关心的问题进行报道:

问题 3:Julia 在「标准 ML」中的表现如何?

Julia  的内核速度很好:在 CPU 上,我们做得非常好,在 GPU 上,每个人都只是调用相同的 cudnn 等;Julia 的 AD 速度也很好。不过  Zygote 可能会有一些开销,但与 Jax/PyTorch/TensorFlow 相比,Zygote  在大多数情况下速度是很快的。具体来说,PyTorch 开销要高得多,在标准 ML  工作流程中甚至无法测量。一个足够大的矩阵乘法会解决分配问题或其他 O(n) 问题;Julia  不融合内核,因此在大多数基准测试中,如果用户查看它,就会发现它没有融合 conv 或 RNN cudnn 调用。

问题 4:我们应该跟踪哪些重要的实验和基准?

XLA  的分布式调度器非常好。当我们考虑扩展时,我们应该忽略 PyTorch,去考虑 DaggerFlux 与 TensorFlow/Jax。XLA  有更多的灵活性来改变操作,所以我认为 XLA 才是赢家,我们需要使用 e-graphs  技巧来匹配它。另一件需要注意的事情就是「自动微分中缺少中间部分」,这种情况还需要解决。

问题 7:有什么推荐的软件包?

我倾向于在需要时使用 Flux,但大家还是尽量使用 DiffEqFlux。就现有内核而言,Flux 是最完整的,但它的风格让我感到厌烦。我希望有一个 Flux 不使用隐式参数,而是使用显式参数。我希望这些参数由 ComponentArrays 表示。

更多内容请参考:https://discourse.julialang.org/t/state-of-machine-learning-in-julia/74385

相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
7天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
17 2
|
9天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
23 1
|
9天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
28 1
|
15天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
21 3
|
20天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
26 1
|
25天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
55 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能

热门文章

最新文章