Android P 第二个测试版本请求网络 CLEARTEXT communication to host not permitted by network

简介: Android P 第二个测试版本请求网络 CLEARTEXT communication to host not permitted by network

问题: 由于 Android P 限制了明文流量的网络请求,非加密的流量请求都会被系统禁止掉。


如果当前应用的请求是 htttp 请求,而非 https ,这样就会导系统禁止当前应用进行该请求,如果 WebView 的 url 用 http 协议,同样会出现加载失败,https 不受影响。


为此,OkHttp3 做了检查,所以如果使用了明文流量,默认情况下,在 Android P 版本 OkHttp3 就抛出异常: CLEARTEXT communication to " + host + " not permitted by network security policy


   if (!Platform.get().isCleartextTrafficPermitted(host)) {

         throw new RouteException(new UnknownServiceException(

             "CLEARTEXT communication to " + host + " not permitted by network security policy"));

    }

1

2

3

4

解决:


1:在 res 下新建一个 xml 目录,然后创建一个名为:network_security_config.xml 文件 ,该文件内容如下:


   <?xml version="1.0" encoding="utf-8"?>

   <network-security-config>

       <base-config cleartextTrafficPermitted="true" />

   </network-security-config>

1

2

3

4

然后在 AndroidManifest.xml application 标签内应用上面的xml配置:

        <application
            android:name=".App"
            android:icon="@mipmap/ic_launcher"
            android:label="@string/app_name"
            android:networkSecurityConfig="@xml/network_security_config"
            android:roundIcon="@mipmap/ic_launcher_round"
            android:theme="@style/AppTheme"></application>

2:服务器和本地应用都改用 https (推荐)

3:targetSdkVersion 降级回到 27

目录
相关文章
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
86 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
5天前
|
运维 Prometheus 监控
如何在测试环境中保持操作系统、浏览器版本和服务器配置的稳定性和一致性?
如何在测试环境中保持操作系统、浏览器版本和服务器配置的稳定性和一致性?
|
13天前
|
安全 Linux 虚拟化
|
6天前
|
网络虚拟化
生成树协议(STP)及其演进版本RSTP和MSTP,旨在解决网络中的环路问题,提高网络的可靠性和稳定性
生成树协议(STP)及其演进版本RSTP和MSTP,旨在解决网络中的环路问题,提高网络的可靠性和稳定性。本文介绍了这三种协议的原理、特点及区别,并提供了思科和华为设备的命令示例,帮助读者更好地理解和应用这些协议。
19 4
|
10天前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
|
17天前
|
编解码 安全 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(10-2):保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali——Liinux-Debian:就怕你学成黑客啦!)作者——LJS
保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali以及常见的报错及对应解决方案、常用Kali功能简便化以及详解如何具体实现
|
21天前
|
网络协议 Shell 网络安全
解决两个 Android 模拟器之间无法网络通信的问题
让同一个 PC 上运行的两个 Android 模拟器之间能相互通信,出(qiong)差(ren)的智慧。
22 3
|
30天前
|
机器学习/深度学习 弹性计算 自然语言处理
前端大模型应用笔记(二):最新llama3.2小参数版本1B的古董机测试 - 支持128K上下文,表现优异,和移动端更配
llama3.1支持128K上下文,6万字+输入,适用于多种场景。模型能力超出预期,但处理中文时需加中英翻译。测试显示,其英文支持较好,中文则需改进。llama3.2 1B参数量小,适合移动端和资源受限环境,可在阿里云2vCPU和4G ECS上运行。
|
1月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
46 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 算法 PyTorch
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-7.0版本进行目标检测的完整流程,包括算法介绍、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。YOLOv5以其高精度、快速度和模型小尺寸在计算机视觉领域受到广泛应用。
393 0
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)