Android四大架构的优缺点

简介: Android四大架构的优缺点

以下是对项目常见的 MVC、MVP、Clean、AAC 架构做个比对。


首先,一张表格展示各架构的类冗余情况:


需求是,写三个页面,ListFragment、DetailFragment、PreviewFragment,每个页面至少用到 3个 Note 业务、3个 User 业务。问:上述架构分别需编写多少类?



image.png

MVC 架构的缺陷

View、Controller、Model 相互依赖,造成代码耦合。

难以分工,难以将 View、Controller、Model 分给不同的人写。

难以维护,没有中间件接口做缓冲,难以替换底层的实现。

public class NoteListFragment extends BaseFragment {
   public void refreshList() {
       new Thread(new Runnable() {
           @Override
           public void run() {
               //view 中直接依赖 model。那么 view 须等 model 编写好才能开工。
               mNoteList = mDataManager.getNoteList();
               mHandler.sendMessage(REFRESH_LIST, mNoteList);
           }
       }).start();
   }
   private Handler mHandler = new Handler() {
       @Override
       public void handleMessage(Message msg) {
           switch (msg) {
               case REFRESH_LIST:
                   mAdapter.setList(mNoteList);
                   mAdapter.notifyDataSetChanged();
                   break;
               default:
           }
       }
   };
   ...
}

MVP 架构的特点与局限

MVP 架构的特点是 面向接口编程。在 View、Presenter、Model 之间分别用 中间件接口 做衔接,当有新的底层实现时,能够无缝替换。

此外,MVP 的 View 和 Model 并不产生依赖,因此可以说是对 View 和 Model 做了代码解耦。


public class NoteListContract {
    interface INoteListView {
        void showDialog(String msg);
        void showTip(String tip);
        void refreshList(List<NoteBean> beans);
    }
    interface INoteListPresenter {
        void requestNotes(String type);
        void updateNotes(NoteBean... beans);
        void deleteNotes(NoteBean... beans);
    }
    interface INoteListModel {
        List<NoteBean> getNoteList();
        int updateNote(NoteBean bean);
        int deleteNote(NoteBean bean);
    }
}

但 MVP 架构有其局限性。按我的理解,MVP 设计的初衷是, “让天下没有难替换的 View 和 Model” 。该初衷背后所基于的假设是,“上层逻辑稳定,但底层实现更替频繁” 。在这个假设的引导下,使得三者中, 只有 Presenter 具备独立意志和决定权,掌管着 UI 逻辑和业务逻辑,而 View 和 Model 只是外接的工具。



public class NoteListPresenter implements NoteListContract.INoteListPresenter {
    private NoteListContract.INoteListModel mDataManager;
    private NoteListContract.INoteListView mView;
    @Override
    public void requestNotes(String type) {
        Observable.create(new ObservableOnSubscribe<List<NoteBean>>() {
            @Override
            public void subscribe(ObservableEmitter<List<NoteBean>> e) throws Exception {
                List<NoteBean> noteBeans = mDataManager.getNoteList();
                e.onNext(noteBeans);
            }
        }).subscribeOn(Schedulers.io()).observeOn(AndroidSchedulers.mainThread())
                .subscribe(new Consumer<List<NoteBean>>() {
                    @Override
                    public void accept(List<NoteBean> beans) throws Exception {
                        //presenter 直接干预了 UI 在拿到数据后做什么,使得逻辑上没有发生解耦。
                        //正常来说,解耦意味着,presenter 的职能边界仅限返回结果数据,
                        //由 UI 来依据响应码处理 UI 逻辑。
                        mView.refreshList(beans);
                    }
                });
    }
    ...
}

然而,这样的假设多数时候并不实际。可视化需求是变化多端的,在牵涉到视觉交互时,必然涉及 UI 逻辑的修改,也就是说,View 和 Presenter 的相互牵连,使得 UI 的改动需要 View 和 Presenter 编写者配合着完成,增加沟通协作成本。


长久来看,二者都难以成长。Presenter 编写者容易被各种非本职工作拖累,View 的编写者不会尝试独立自主,例如通过多态等模式将 UI 封装成可适应性的组件,反正 … 有 Presenter 来各种 if else 嘛。


Clean 架构的特点和不足


image.png

image.png为解决 Presenter 职能边界不明确 的问题,在 Clean 架构中,业务逻辑的职能被转移到领域层,由 Usecase 专职管理。Presenter 则弱化为 ViewModel ,作为代理数据请求,和衔接数据回调的缓冲区。


Clean 架构的特点是 单向依赖、数据驱动编程。 View -> ViewModel -> Usecase -> Model 。


View 对 ViewModel 的单向依赖,是通过 databinding 特性实现的。ViewModel 只负责代理数据请求,在 Usecase 处理完业务返回结果数据时,结果数据被赋值给可观察的 databinding 数据,而 View 则依据数据的变化而变化。

public class NoteListViewModel {
    private ObservableList<NoteBean> mListObservable = new ObservableArrayList<>();
    private void requestNotes(String type) {
        if (null == mRequestNotesUsecase) {
            mRequestNotesUsecase = new ProveListInitUseCase();
        }
        mUseCaseHandler.execute(mRequestNotesUsecase, new RequestNotesUsecase.RequestValues(type),
                new UseCase.UseCaseCallback<RequestNotesUsecase.ResponseValue>() {
                    @Override
                    public void onSuccess(RequestNotesUsecase.ResponseValue response) {
                        //viewModel 的可观察数据发生变化后,databinding 会自动更新 UI 展示。
                        mListObservable.clear();
                        mListObservable.addAll(response.getNotes());
                    }
                    @Override
                    public void onError() {
                    }
                });
    }
    ...
}

但 Clean 架构也有不足:粒度太细 。一个 Usecase 受限于请求参数,因而只能处理一类请求。View 请求的数据包含几种类型,就至少需要准备几个 Usecase。Usecase 是依据当前 View 对数据的需求量身定制的,因此 Usecase 的复用率极低,项目会因而急剧的增加类和重复代码。


image.png

image.png

public class RequestNotesUseCase extends UseCase<RequestNotesUseCase.RequestValues, RequestNotesUseCase.ResponseValue> {
    private DataManager mDataManager;
    @Override
    protected void executeUseCase(final RequestValues values) {
        List<NoteBean> noteBeans = mDataManager.getNotes();
        ...
        getUseCaseCallback().onSuccess(new RequestNotesUseCase.ResponseValue(noteBeans));
    }
    //每新建一个 usecase 类,都需要手动为其配置 请求参数列表 和 响应参数列表。
    public static final class RequestValues implements UseCase.RequestValues {
        private String type;
        public String getType() {
            return type;
        }
        public void setType(String type) {
            this.type = type;
        }
    }
    public static final class ResponseValue implements UseCase.ResponseValue {
        public List<NoteBean> mBeans;
        public ResponseValue(List<NoteBean> beans) {
            mBeans = beans;
        }
    }
}

AAC 架构的特点

AAC 也是数据驱动编程。只不过它不依赖于 MVVM 特性,而是直接在 View 中写个观察者回调,以接收结果数据并处理 UI 逻辑。

public class NoteListFragment extends BaseFragment {
    @Override
    public void onActivityCreated(@Nullable Bundle savedInstanceState) {
        super.onActivityCreated(savedInstanceState);
        viewModel.getNote().observe(this, new Observer<NoteBean>() {
            @Override
            public void onChanged(@Nullable NoteBean bean) {
                //update UI
            }
        });
    }
    ...
}

你完全可以将其理解为 B/S 架构:从 Web 前端向 Web 后端发送了数据请求,后端在处理完毕后响应结果数据给前端,前端再依据需求处理 UI 逻辑。等于说, AAC 将业务完全压到了 Model 层。



目录
相关文章
|
安全 Android开发 iOS开发
深入探索Android与iOS的差异:从系统架构到用户体验
在当今的智能手机市场中,Android和iOS无疑是最受欢迎的两大操作系统。本文旨在探讨这两个平台之间的主要差异,包括它们的系统架构、开发环境、安全性、以及用户体验等方面。通过对比分析,我们可以更好地理解为何不同的用户群体可能会偏好其中一个平台,以及这些偏好背后的技术原因。
|
Android开发 Swift iOS开发
深入探索iOS与Android操作系统的架构差异及其对应用开发的影响
在当今数字化时代,移动设备已经成为我们日常生活和工作不可或缺的一部分。其中,iOS和Android作为全球最流行的两大移动操作系统,各自拥有独特的系统架构和设计理念。本文将深入探讨iOS与Android的系统架构差异,并分析这些差异如何影响应用开发者的开发策略和用户体验设计。通过对两者的比较,我们可以更好地理解它们各自的优势和局限性,从而为开发者提供有价值的见解,帮助他们在这两个平台上开发出更高效、更符合用户需求的应用。
|
11月前
|
Android开发 开发者 Kotlin
Android实战经验之Kotlin中快速实现MVI架构
MVI架构通过单向数据流和不可变状态,提供了一种清晰、可预测的状态管理方式。在Kotlin中实现MVI架构,不仅提高了代码的可维护性和可测试性,还能更好地应对复杂的UI交互和状态管理。通过本文的介绍,希望开发者能够掌握MVI架构的核心思想,并在实际项目中灵活应用。
526 8
|
开发工具 Android开发 iOS开发
Android与iOS生态差异深度剖析:技术架构、开发体验与市场影响####
本文旨在深入探讨Android与iOS两大移动操作系统在技术架构、开发环境及市场表现上的核心差异,为开发者和技术爱好者提供全面的视角。通过对比分析,揭示两者如何塑造了当今多样化的移动应用生态,并对未来发展趋势进行了展望。 ####
|
网络协议 Linux Android开发
深入探索Android系统架构与性能优化
本文旨在为读者提供一个全面的视角,以理解Android系统的架构及其关键组件。我们将探讨Android的发展历程、核心特性以及如何通过有效的策略来提升应用的性能和用户体验。本文不包含常规的技术细节,而是聚焦于系统架构层面的深入分析,以及针对开发者的实际优化建议。
383 21
|
存储 Linux API
深入探索Android系统架构:从内核到应用层的全面解析
本文旨在为读者提供一份详尽的Android系统架构分析,从底层的Linux内核到顶层的应用程序框架。我们将探讨Android系统的模块化设计、各层之间的交互机制以及它们如何共同协作以支持丰富多样的应用生态。通过本篇文章,开发者和爱好者可以更深入理解Android平台的工作原理,从而优化开发流程和提升应用性能。
|
安全 Android开发 iOS开发
深入探索iOS与Android系统架构差异及其对开发者的影响
本文旨在通过对比分析iOS和Android两大移动操作系统的系统架构,探讨它们在设计理念、技术实现及开发者生态方面的差异。不同于常规摘要仅概述内容要点,本摘要将简要触及核心议题,为读者提供对两大平台架构特点的宏观理解,铺垫
|
IDE 安全 Android开发
深入探索Android与iOS操作系统的架构差异
本文旨在对比分析Android和iOS两大主流移动操作系统在架构设计上的根本差异。通过详细解读两者的系统架构、开发环境、以及安全性等方面,揭示它们各自的特点及优势,为开发者选择合适的平台提供参考。
|
Java Linux Android开发
深入探索Android系统架构:从Linux内核到应用层
本文将带领读者深入了解Android操作系统的复杂架构,从其基于Linux的内核到丰富多彩的应用层。我们将探讨Android的各个关键组件,包括硬件抽象层(HAL)、运行时环境、以及核心库等,揭示它们如何协同工作以支持广泛的设备和应用。通过本文,您将对Android系统的工作原理有一个全面的认识,理解其如何平衡开放性与安全性,以及如何在多样化的设备上提供一致的用户体验。
|
前端开发 JavaScript 测试技术
android做中大型项目完美的架构模式是什么?是MVVM吗?如果不是,是什么?
在 Android 开发中,选择合适的架构模式对于构建中大型项目至关重要。常见的架构模式有 MVVM、MVP、MVI、Clean Architecture 和 Flux/Redux。每种模式都有其优缺点和适用场景,例如 MVVM 适用于复杂 UI 状态和频繁更新,而 Clean Architecture 适合大型项目和多平台开发。选择合适的架构应考虑项目需求、团队熟悉度和可维护性。
433 6