Google AI教你如何啃NLP中的硬骨头:开放域长形式问答系统

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 开放域长格式问答(Open-domain long-on answering (LFQA))是自然语言处理的一项基本挑战。谷歌AI利用最新的稀疏注意力模型和基于检索的模型推出了一个新系统,对于回答长篇问题有着杰出的效果。

微信图片_20220113004536.png  新智元报道  

来源:外媒

编辑:PY

【新智元导读】 开放域长格式问答(Open-domain long-on answering (LFQA))是自然语言处理的一项基本挑战谷歌AI利用最新的稀疏注意力模型和基于检索的模型推出了一个新系统,对于回答长篇问题有着杰出的效果。


开放域长时间回答(LFQA)问题是自然语言处理(NLP)中的一个基本挑战,涉及与给定查询相关的检索文档,并且根据它们生成详细的有大段文字的答案。


微信图片_20220113004539.png


近年来,在虚拟开放域问答系统(QA)方面取得了显著进展。

 

在这种技术中,一个的短语就足以回答一个问题,但是对于长形式的问题回答(LFQA)则表现不理想。

 

LFQA 是一个重要的任务,主要是因为它提供了一个测试生成文本模型的真实性的平台。

 

但是,现有的基准和评估指标并不完全适用于 LFQA 的进展。

 

在最近即将在 NAACL 2021上发表的一篇题为「长形式问答进步中的障碍」的论文中,Google.ai 提出了一个新的开放域长形式问答系统,该系统利用了 NLP 的两个最新进展:

 

一个是最先进的「稀疏注意模型」(sparse attention models),例如RT(Routing Transformer),允许基于注意力的模型扩展到长序列。


另一个是基于检索的模型,例如 REALM,可以方便检索与给定查询相关的维基百科文章。


微信图片_20220113004542.png 


该系统在生成答案之前,将来自多个检索到的维基百科文章中与给定问题相关的信息组合在一起。

 

ELI5是唯一可用于长形式问题回答的大规模公开数据集,该系统在 ELI5上实现了一个新的最先进的状态,。

 

然而,尽管该系统在公共排行榜上名列前茅,研究人员已经发现了一些关于ELI5数据集和相关的评估指标令人担忧的事情。

 

特别是,他们发现很少有证据表明,模型使用的检索条件和琐碎的基线(例如,输入复制)胜过现代系统。研究人员还观察到,数据集中存在明显的训练/验证重叠。


文本生成


NLP 模型的主要组成部分是 Transformer 体系结构。序列中的每一个令牌(token )都会照顾到序列中的每一个其他令牌,从而形成一个可以根据序列长度进行二次伸缩的模型。

 

RT 模型引入了一种动态的、基于内容的机制,降低了 Transformer 模型中注意力的复杂性。

 

NLP 模型的主要组成部分是 Transformer 体系结构。序列中的每一个令牌都会照顾到序列中的每一个其他令牌,从而形成一个可以根据序列长度进行二次伸缩的模型。RT 模型引入了一种动态的、基于内容的机制,降低了 Transformer 模型中注意力的复杂性。

 

RT 工作的关键因素是,每一个能参与到其他每个令牌的令牌通常是多余的,可以通过本地和全局注意力的组合来近似。

 

RT 模型是基于 PG-19数据集的语言建模目标进行预训练的。


微信图片_20220113004544.gif



image.gif


信息检索


研究人员将 RT 模型与来自 REALM 的检索结合起来,证明了 RT 模型的有效性。

 

REALM 模型是一种基于检索的模型,它利用最大限度的内部产品搜索来获取与特定查询或问题相关的维基百科文章。


研究人员通过使用「对比损失」提高了 REALM 检索的质量。

 

评估


该模型通过 ELI5数据集进行了测试,ELI5数据集是 KILT 基准的一部分,也是唯一公开的大规模 LFQA 数据集。接下来,他们对来自 KILT 的 ELI5数据集上的预训练 RT 模型和来自 c-REALM 的检索进行微调。

 

根据已经提交的结果,在 ELI5上的 KILT 排行榜上的长形式的问题回答结果第一位是 RT+c-REALM,得分为2.36。

 

尽管这种模式在排行榜上名列前茅,但仍然存在着一些挑战。


image.png 


研究人员几乎没有观察到任何证据,表明这个模型的下一代是建立在已检索到的文档之上的。

他们还发现 ELI5的培训、验证和测试集有明显的重叠。

 

此外,用于评估文本生成质量的 Rouge-L 度量标准也存在一些问题,因为这些文本生成标准基线微不足道。

 

研究人员希望社区共同努力解决这些问题,以便研究人员能够在这一领域取得有意义的进展。

参考资料:

https://www.marktechpost.com/2021/03/27/google-ai-introduces-a-new-system-for-open-domain-long-form-question-answering-lfqa/

相关文章
|
8天前
|
机器学习/深度学习 人工智能 安全
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
GLM-Zero 是智谱AI推出的深度推理模型,专注于提升数理逻辑、代码编写和复杂问题解决能力,支持多模态输入与完整推理过程输出。
119 24
GLM-Zero:智谱AI推出与 OpenAI-o1-Preview 旗鼓相当的深度推理模型,开放在线免费使用和API调用
|
7天前
|
人工智能 自然语言处理 程序员
通义灵码2.0全新升级,AI程序员全面开放使用
通义灵码2.0来了,成为全球首个同时上线JetBrains和VSCode的AI 程序员产品!立即下载更新最新插件使用。
1304 24
|
3天前
|
人工智能 自然语言处理 测试技术
阿里云通义实验室自然语言处理方向负责人黄非:通义灵码2.0,迈入 Agentic AI
在通义灵码 2.0 发布会上,阿里云通义实验室自然语言处理方向负责人黄非分享了代码大模型的演进。过去一年来,随着大模型技术的发展,特别是智能体技术的深入应用,通义灵码也在智能体的基础上研发了针对于整个软件研发流程的不同任务的智能体,这里既包括单智能体,也包括多智能体合并框架,在这样的基础上我们研发了通义灵码2.0。
|
4天前
|
人工智能 Cloud Native 大数据
云+AI开启算力新时代,共建开源开放生态赴未来 | 2024龙蜥大会主论坛
本次分享的主题是云 + AI开启算力新时代,共建开源开放生态赴未来 | 2024龙蜥大会主论坛,由阿里巴巴集团合伙人、阿里云基础设施事业部总经理蒋江伟分享。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
智谱AI推出的GLM-4V-Flash是一款专注于图像理解的免费开放大模型,提供API接口支持用户上传图片URL或Base64编码图片获取详细的图像描述。该模型通过深度学习和卷积神经网络技术,简化了图像分析流程,提高了开发效率,适用于内容审核、辅助视障人士、社交媒体、教育和电子商务等多个应用场景。
198 14
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
|
1月前
|
人工智能 大数据 测试技术
自主和开放并举 探索下一代阿里云AI基础设施固件创新
12月13日,固件产业技术创新联盟产业峰会在杭州举行,阿里云主导的开源固件测试平台发布和PCIe Switch固件技术亮相,成为会议焦点。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(NLP)是AI的重要分支,旨在让计算机理解人类语言
自然语言处理(NLP)是AI的重要分支,旨在让计算机理解人类语言。本文探讨了深度学习在NLP中的应用,包括其基本任务、优势、常见模型及具体案例,如文本分类、情感分析等,并讨论了Python的相关工具和库,以及面临的挑战和未来趋势。
118 1
|
2月前
|
人工智能 测试技术 API
成功注册Google的SerpAPI实现AI Agent的tool
成功注册Google的SerpAPI实现AI Agent的tool
154 5
|
2月前
|
机器学习/深度学习 自然语言处理 知识图谱
GraphRAG在自然语言处理中的应用:从问答系统到文本生成
【10月更文挑战第28天】作为一名自然语言处理(NLP)和图神经网络(GNN)的研究者,我一直在探索如何将GraphRAG(Graph Retrieval-Augmented Generation)模型应用于各种NLP任务。GraphRAG结合了图检索和序列生成技术,能够有效地处理复杂的语言理解和生成任务。本文将从个人角度出发,探讨GraphRAG在构建问答系统、文本摘要、情感分析和自动文本生成等任务中的具体方法和案例研究。
96 5

热门文章

最新文章